-
Previous Article
Identification of water quality model parameters using artificial bee colony algorithm
- NACO Home
- This Issue
-
Next Article
An efficient algorithm for convex quadratic semi-definite optimization
A class of smoothing SAA methods for a stochastic linear complementarity problem
1. | School of Mathematics, Liaoning Normal University, Dalian, 116029, China |
2. | School of Management, University of Southampton, Highfield Southampton SO17 1BJ, United Kingdom |
3. | School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 |
References:
[1] |
B. Chen and P. T. Harker, A non-interior point continuation method for linear complementarity problems, SIAM Journal on Matrix Analysis and Applications, 14 (1993), 1168-1190.
doi: 10.1137/0614081. |
[2] |
C. Chen and O. L. Mangasarian, Smoothing methods for convex inequalities and linear complementarity problems, Mathematical Programming, 71 (1995), 51-69.
doi: 10.1007/BF01592244. |
[3] |
C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Comp. Optim. and Appl., 5 (1996), 97-138.
doi: 10.1007/BF00249052. |
[4] |
X. J. Chen, Smoothing methods for complementarity problems and their applications: a survey, J. Oper. Res. Soc. Japan, 43 (2000), 32-47.
doi: 10.1016/S0453-4514(00)88750-5. |
[5] |
X. J. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Math. Oper. Res., 30 (2005), 1022-1038.
doi: 10.1287/moor.1050.0160. |
[6] |
F. Facchinei and J. S. Pang, "Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II," Springer-Verlag, New York, 2003. |
[7] |
G. Gürkan, A. Y. Özge and S. M. Robinson, Sample-path solution of stochastic variational inequalities, Mathematical Programming, 84 (1999), 313-333.
doi: 10.1007/s101070050024. |
[8] |
H. Jiang and H. Xu, Stochastic approximation approaches to the stochastic variational inequality problem, IEEE Transactions on Automatic Control, 53 (2008), 1462-1475.
doi: 10.1109/TAC.2008.925853. |
[9] |
C. Kanzow, "Some Tools Allowing Interior-Point Methods to Become Noninterior," Technical Report, Institute of Applied Mathematics, University of Hamburg, Germany, 1994. |
[10] |
J. S. Pang, Error bounds in mathematical programming, Mathematical Programming, 79 (1997), 299-332.
doi: 10.1007/BF02614322. |
[11] |
S. M. Robinson, Some continuity properties of polyhedral multifunctions, Mathematical Programming Study, 14 (1981), 206-214. |
[12] |
R. T. Rockafellar and R. J. B. Wets, "Variational Analysis," Berlin Heidelberg, 1998. |
[13] |
A. Shapiro, D. Dentcheva and A. Ruszczynski, "Lectures on Stochastic Programming: Modeling and Theory," SIAM, Philadelphia, 2009.
doi: 10.1137/1.9780898718751. |
[14] |
S. Smale, Algorithms for solving equations, in "Proceedings of the International Congress of Mathematicians," Ameri. Math. Sot., Providence, 1987. |
[15] |
J. Takaki and N. Yamashita, A derivative-free trust-region algorithm for unconstrained optimization with controlled error, Numerical Algebra, Control and Optimization, 1 (2011), 117-145.
doi: 10.3934/naco.2011.1.117. |
[16] |
H. Xu and D. Zhang, Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications, Mathematical Programming, 119 (2009), 371-401.
doi: 10.1007/s10107-008-0214-0. |
[17] |
H. Xu, Sample average approximation methods for a class of stochastic variational inequality problems, Asian Pacific Journal of Operations Research, 27 (2010), 103-119.
doi: 10.1142/S0217595910002569. |
[18] |
Y. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least squares, Numerical Algebra, Control and Optimization, 1 (2011), 15-34.
doi: 10.3934/naco.2011.1.15. |
[19] |
L. Zhang, J. Zhang and Y. Wu, On the convergence of coderivative of SAA solution mapping for a parametric stochastic generalized equation, Set-valued Anal., 19 (2011), 107-134.
doi: 10.1007/s11228-010-0141-0. |
show all references
References:
[1] |
B. Chen and P. T. Harker, A non-interior point continuation method for linear complementarity problems, SIAM Journal on Matrix Analysis and Applications, 14 (1993), 1168-1190.
doi: 10.1137/0614081. |
[2] |
C. Chen and O. L. Mangasarian, Smoothing methods for convex inequalities and linear complementarity problems, Mathematical Programming, 71 (1995), 51-69.
doi: 10.1007/BF01592244. |
[3] |
C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Comp. Optim. and Appl., 5 (1996), 97-138.
doi: 10.1007/BF00249052. |
[4] |
X. J. Chen, Smoothing methods for complementarity problems and their applications: a survey, J. Oper. Res. Soc. Japan, 43 (2000), 32-47.
doi: 10.1016/S0453-4514(00)88750-5. |
[5] |
X. J. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Math. Oper. Res., 30 (2005), 1022-1038.
doi: 10.1287/moor.1050.0160. |
[6] |
F. Facchinei and J. S. Pang, "Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II," Springer-Verlag, New York, 2003. |
[7] |
G. Gürkan, A. Y. Özge and S. M. Robinson, Sample-path solution of stochastic variational inequalities, Mathematical Programming, 84 (1999), 313-333.
doi: 10.1007/s101070050024. |
[8] |
H. Jiang and H. Xu, Stochastic approximation approaches to the stochastic variational inequality problem, IEEE Transactions on Automatic Control, 53 (2008), 1462-1475.
doi: 10.1109/TAC.2008.925853. |
[9] |
C. Kanzow, "Some Tools Allowing Interior-Point Methods to Become Noninterior," Technical Report, Institute of Applied Mathematics, University of Hamburg, Germany, 1994. |
[10] |
J. S. Pang, Error bounds in mathematical programming, Mathematical Programming, 79 (1997), 299-332.
doi: 10.1007/BF02614322. |
[11] |
S. M. Robinson, Some continuity properties of polyhedral multifunctions, Mathematical Programming Study, 14 (1981), 206-214. |
[12] |
R. T. Rockafellar and R. J. B. Wets, "Variational Analysis," Berlin Heidelberg, 1998. |
[13] |
A. Shapiro, D. Dentcheva and A. Ruszczynski, "Lectures on Stochastic Programming: Modeling and Theory," SIAM, Philadelphia, 2009.
doi: 10.1137/1.9780898718751. |
[14] |
S. Smale, Algorithms for solving equations, in "Proceedings of the International Congress of Mathematicians," Ameri. Math. Sot., Providence, 1987. |
[15] |
J. Takaki and N. Yamashita, A derivative-free trust-region algorithm for unconstrained optimization with controlled error, Numerical Algebra, Control and Optimization, 1 (2011), 117-145.
doi: 10.3934/naco.2011.1.117. |
[16] |
H. Xu and D. Zhang, Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications, Mathematical Programming, 119 (2009), 371-401.
doi: 10.1007/s10107-008-0214-0. |
[17] |
H. Xu, Sample average approximation methods for a class of stochastic variational inequality problems, Asian Pacific Journal of Operations Research, 27 (2010), 103-119.
doi: 10.1142/S0217595910002569. |
[18] |
Y. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least squares, Numerical Algebra, Control and Optimization, 1 (2011), 15-34.
doi: 10.3934/naco.2011.1.15. |
[19] |
L. Zhang, J. Zhang and Y. Wu, On the convergence of coderivative of SAA solution mapping for a parametric stochastic generalized equation, Set-valued Anal., 19 (2011), 107-134.
doi: 10.1007/s11228-010-0141-0. |
[1] |
Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 |
[2] |
Ming-Zheng Wang, M. Montaz Ali. Penalty-based SAA method of stochastic nonlinear complementarity problems. Journal of Industrial and Management Optimization, 2010, 6 (1) : 241-257. doi: 10.3934/jimo.2010.6.241 |
[3] |
Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial and Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53 |
[4] |
Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial and Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259 |
[5] |
Liu Yang, Xiaojiao Tong, Yao Xiong, Feifei Shen. A smoothing SAA algorithm for a portfolio choice model based on second-order stochastic dominance measures. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1171-1185. doi: 10.3934/jimo.2018198 |
[6] |
ShiChun Lv, Shou-Qiang Du. A new smoothing spectral conjugate gradient method for solving tensor complementarity problems. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021150 |
[7] |
Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial and Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911 |
[8] |
Zhengyong Zhou, Bo Yu. A smoothing homotopy method based on Robinson's normal equation for mixed complementarity problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 977-989. doi: 10.3934/jimo.2011.7.977 |
[9] |
Peili Li, Xiliang Lu, Yunhai Xiao. Smoothing Newton method for $ \ell^0 $-$ \ell^2 $ regularized linear inverse problem. Inverse Problems and Imaging, 2022, 16 (1) : 153-177. doi: 10.3934/ipi.2021044 |
[10] |
Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141 |
[11] |
Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030 |
[12] |
Qiyu Wang, Hailin Sun. Sparse markowitz portfolio selection by using stochastic linear complementarity approach. Journal of Industrial and Management Optimization, 2018, 14 (2) : 541-559. doi: 10.3934/jimo.2017059 |
[13] |
Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645 |
[14] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021082 |
[15] |
Yan Li, Liping Zhang. A smoothing Newton method preserving nonnegativity for solving tensor complementarity problems with $ P_0 $ mappings. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022041 |
[16] |
Yafeng Li, Guo Sun, Yiju Wang. A smoothing Broyden-like method for polyhedral cone constrained eigenvalue problem. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 529-537. doi: 10.3934/naco.2011.1.529 |
[17] |
Zheng-Hai Huang, Jie Sun. A smoothing Newton algorithm for mathematical programs with complementarity constraints. Journal of Industrial and Management Optimization, 2005, 1 (2) : 153-170. doi: 10.3934/jimo.2005.1.153 |
[18] |
Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557 |
[19] |
Chunlin Hao, Xinwei Liu. A trust-region filter-SQP method for mathematical programs with linear complementarity constraints. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1041-1055. doi: 10.3934/jimo.2011.7.1041 |
[20] |
Mingzheng Wang, M. Montaz Ali, Guihua Lin. Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks. Journal of Industrial and Management Optimization, 2011, 7 (2) : 317-345. doi: 10.3934/jimo.2011.7.317 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]