-
Previous Article
On Markovian solutions to Markov Chain BSDEs
- NACO Home
- This Issue
-
Next Article
On a family of means generated by the Hardy-Littlewood maximal inequality
Maximum entropy methods for generating simulated rainfall
1. | Centre for Industrial and Applied Mathematics, Mawson Lakes Campus, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, 5095, Australia |
2. | Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia |
3. | Data Analysis Australia Pty Ltd, School of Mathematics and Statistics, University of Western Australia, Crawley WA, 6009, Australia |
References:
[1] |
Jonathan M. Borwein and Adrian S. Lewis, "Convex Analysis and Nonlinear Optimization, Theory and Examples," Second edition. CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, Springer, New York, 3, 2006. |
[2] |
Jonathan M. Borwein, Maximum entropy and feasibility methods for convex and nonconvex inverse problems, Optimization, Invited survey paper, to appear, pre-print, http://carma.newcastle.edu.au/jon/inverse-paper.pdf. |
[3] |
H. J. Fowler, C. G. Kilsby, P. E. O'Connell and A. Burton, A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change, J. Hydrol., 308 (2005), 50-60.
doi: 10.1016/j.jhydrol.2004.10.021. |
[4] |
Md Masud Hasan and Peter K. Dunn, Two Tweedie distributions that are near optimal for modelling monthly rainfall in Australia, International J Climatology, 2010.
doi: 10.1002/joc.2162. |
[5] |
R. W. Katz and M. B. Parlange, Overdispersion phenomenon in stochastic modelling of precipitation, J. Climate, 11 (1998), 591-601.
doi: 10.1175/1520-0442(1998)011<0591:OPISMO>2.0.CO;2. |
[6] |
Roger B. Nelsen, "An Introduction to Copulas," Lecture Notes in Statistics, Springer-Verlag, New York, (139), 1999. |
[7] |
Julia Piantadosi, Phil Howlett and John Boland, Matching the grade correlation coefficient using a copula with maximum disorder, J. Ind. Manag. Optim., 3 (2007), 305-312. |
[8] |
J. Piantadosi, J. W. Boland and P. G. Howlett, Simulation of rainfall totals on various time scales-daily, monthly and yearly, Environmental Modeling and Assessment, 14 (2009), 431-438.
doi: 10.1007/s10666-008-9157-3. |
[9] |
Julia Piantadosi, Phil Howlett and Jonathan Borwein, Copulas with maximum entropy, Optimization Letters, 6 (2012), 99-125.
doi: 10.1007/s11590-010-0254-2. |
[10] |
J. Piantadosi, P. G. Howlett, J. M. Borwein and J. Henstridge, Generation of simulated rainfall data at different time-scales, in "19th International Congress on Modelling and Simulation" (eds. F. Chan, D. Marinova and R. S. Anderssen), MODSIM2011, (2011), 1652-1658. http://www.mssanz.org.au/modsim2011/D10/wongsosaputro.pdf |
[11] |
K. Rosenberg, J. Boland and P. G. Howlett, Simulation of monthly rainfall totals, ANZIAM J., 46 (2004), (E), E85-E104. |
[12] |
R. Srikanthan and T. A. McMahon, Stochastic generation of annual, monthly and daily climate data: A review, Hydr. and Earth Sys. Sci., 5 (2001), 633-670.
doi: 10.5194/hess-5-653-2001. |
[13] |
R. D. Stern and R. Coe, A model fitting analysis of daily rainfall, J. Roy. Statist. Soc. A, 147 (1984), 1-34. |
[14] |
Ruye Wang , Conditional and marginal of multivariate Gaussian, (2006), http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node5.html. |
[15] |
Christopher S. Withers and Saralees Nadarajah, On the compound Poisson-gamma distribution, Kybernetika (Prague), 47 (2011), 15-37. |
[16] |
, Differential Entropy, http://en.wikipedia.org/wiki/Differential\_entropy. |
[17] |
D. S. Wilks and R. L. Wilby, The weather generation game: a review of stochastic weather models, Prog. Phys. Geog., 23 (1999), 329-357. |
show all references
References:
[1] |
Jonathan M. Borwein and Adrian S. Lewis, "Convex Analysis and Nonlinear Optimization, Theory and Examples," Second edition. CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, Springer, New York, 3, 2006. |
[2] |
Jonathan M. Borwein, Maximum entropy and feasibility methods for convex and nonconvex inverse problems, Optimization, Invited survey paper, to appear, pre-print, http://carma.newcastle.edu.au/jon/inverse-paper.pdf. |
[3] |
H. J. Fowler, C. G. Kilsby, P. E. O'Connell and A. Burton, A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change, J. Hydrol., 308 (2005), 50-60.
doi: 10.1016/j.jhydrol.2004.10.021. |
[4] |
Md Masud Hasan and Peter K. Dunn, Two Tweedie distributions that are near optimal for modelling monthly rainfall in Australia, International J Climatology, 2010.
doi: 10.1002/joc.2162. |
[5] |
R. W. Katz and M. B. Parlange, Overdispersion phenomenon in stochastic modelling of precipitation, J. Climate, 11 (1998), 591-601.
doi: 10.1175/1520-0442(1998)011<0591:OPISMO>2.0.CO;2. |
[6] |
Roger B. Nelsen, "An Introduction to Copulas," Lecture Notes in Statistics, Springer-Verlag, New York, (139), 1999. |
[7] |
Julia Piantadosi, Phil Howlett and John Boland, Matching the grade correlation coefficient using a copula with maximum disorder, J. Ind. Manag. Optim., 3 (2007), 305-312. |
[8] |
J. Piantadosi, J. W. Boland and P. G. Howlett, Simulation of rainfall totals on various time scales-daily, monthly and yearly, Environmental Modeling and Assessment, 14 (2009), 431-438.
doi: 10.1007/s10666-008-9157-3. |
[9] |
Julia Piantadosi, Phil Howlett and Jonathan Borwein, Copulas with maximum entropy, Optimization Letters, 6 (2012), 99-125.
doi: 10.1007/s11590-010-0254-2. |
[10] |
J. Piantadosi, P. G. Howlett, J. M. Borwein and J. Henstridge, Generation of simulated rainfall data at different time-scales, in "19th International Congress on Modelling and Simulation" (eds. F. Chan, D. Marinova and R. S. Anderssen), MODSIM2011, (2011), 1652-1658. http://www.mssanz.org.au/modsim2011/D10/wongsosaputro.pdf |
[11] |
K. Rosenberg, J. Boland and P. G. Howlett, Simulation of monthly rainfall totals, ANZIAM J., 46 (2004), (E), E85-E104. |
[12] |
R. Srikanthan and T. A. McMahon, Stochastic generation of annual, monthly and daily climate data: A review, Hydr. and Earth Sys. Sci., 5 (2001), 633-670.
doi: 10.5194/hess-5-653-2001. |
[13] |
R. D. Stern and R. Coe, A model fitting analysis of daily rainfall, J. Roy. Statist. Soc. A, 147 (1984), 1-34. |
[14] |
Ruye Wang , Conditional and marginal of multivariate Gaussian, (2006), http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node5.html. |
[15] |
Christopher S. Withers and Saralees Nadarajah, On the compound Poisson-gamma distribution, Kybernetika (Prague), 47 (2011), 15-37. |
[16] |
, Differential Entropy, http://en.wikipedia.org/wiki/Differential\_entropy. |
[17] |
D. S. Wilks and R. L. Wilby, The weather generation game: a review of stochastic weather models, Prog. Phys. Geog., 23 (1999), 329-357. |
[1] |
Jung-Chao Ban, Song-Sun Lin. Patterns generation and transition matrices in multi-dimensional lattice models. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 637-658. doi: 10.3934/dcds.2005.13.637 |
[2] |
Wen-Guei Hu, Song-Sun Lin. On spatial entropy of multi-dimensional symbolic dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3705-3717. doi: 10.3934/dcds.2016.36.3705 |
[3] |
Dimitra C. Antonopoulou, Marina Bitsaki, Georgia Karali. The multi-dimensional stochastic Stefan financial model for a portfolio of assets. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1955-1987. doi: 10.3934/dcdsb.2021118 |
[4] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[5] |
Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu. The snapback repellers for chaos in multi-dimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 81-92. doi: 10.3934/jcd.2018004 |
[6] |
Franz Achleitner, Anton Arnold, Eric A. Carlen. On multi-dimensional hypocoercive BGK models. Kinetic and Related Models, 2018, 11 (4) : 953-1009. doi: 10.3934/krm.2018038 |
[7] |
Anatoli F. Ivanov. On global dynamics in a multi-dimensional discrete map. Conference Publications, 2015, 2015 (special) : 652-659. doi: 10.3934/proc.2015.0652 |
[8] |
Gerald Sommer, Di Zang. Parity symmetry in multi-dimensional signals. Communications on Pure and Applied Analysis, 2007, 6 (3) : 829-852. doi: 10.3934/cpaa.2007.6.829 |
[9] |
Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027 |
[10] |
Xiaoling Sun, Xiaojin Zheng, Juan Sun. A Lagrangian dual and surrogate method for multi-dimensional quadratic knapsack problems. Journal of Industrial and Management Optimization, 2009, 5 (1) : 47-60. doi: 10.3934/jimo.2009.5.47 |
[11] |
Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011 |
[12] |
Péter Bálint, Imre Péter Tóth. Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 37-59. doi: 10.3934/dcds.2006.15.37 |
[13] |
Wen-Qing Xu. Boundary conditions for multi-dimensional hyperbolic relaxation problems. Conference Publications, 2003, 2003 (Special) : 916-925. doi: 10.3934/proc.2003.2003.916 |
[14] |
Eugenii Shustin. Dynamics of oscillations in a multi-dimensional delay differential system. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 557-576. doi: 10.3934/dcds.2004.11.557 |
[15] |
Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107 |
[16] |
Hiroshi Takahashi, Yozo Tamura. Recurrence of multi-dimensional diffusion processes in Brownian environments. Conference Publications, 2015, 2015 (special) : 1034-1040. doi: 10.3934/proc.2015.1034 |
[17] |
Samuel T. Blake, Andrew Z. Tirkel. A multi-dimensional block-circulant perfect array construction. Advances in Mathematics of Communications, 2017, 11 (2) : 367-371. doi: 10.3934/amc.2017030 |
[18] |
Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861 |
[19] |
Arno Berger. Multi-dimensional dynamical systems and Benford's Law. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 219-237. doi: 10.3934/dcds.2005.13.219 |
[20] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]