• Previous Article
    How to transform matrices $U_1, \ldots, U_p$ to matrices $V_1, \ldots, V_p$ so that $V_i V_j^T= {\mathbb O} $ if $ i \neq j $?
  • NACO Home
  • This Issue
  • Next Article
    Some new bounds for two mappings related to the Hermite-Hadamard inequality for convex functions
2012, 2(2): 279-291. doi: 10.3934/naco.2012.2.279

Jensen's inequality for quasiconvex functions

1. 

Mathematics, School of Engineering & Science, Victoria University, Melbourne, Australia

2. 

School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia

Received  October 2011 Revised  March 2012 Published  May 2012

Some inequalities of Jensen type and connected results are given for quasiconvex functions on convex sets in real linear spaces.
Citation: S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279
References:
[1]

M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. Math, 41 (2010), 353-359.

[2]

M. Alomari, M. Darus and U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225-232. doi: 10.1016/j.camwa.2009.08.002.

[3]

S. S. Dragomir, Two mappings associated with Jensen's inequality, Extracta Math., 8 (1993), 102-105.

[4]

S. S. Dragomir and D. M. Milošević, Two mappings in connection to Jensen's inequality, Zb. Rad. (Krajujevac), 15 (1994), 65-73.

[5]

S. S. Dragomir and D. M. Milošević, Two mappings in connection to Jensen's inequality, Math. Balkanica (N.S.), 9 (1995), 3-9.

[6]

S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin, Indian J. Math., 39 (1997), 1-9.

[7]

S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin, Periodica Math. Hungar., 33 (1996), 93-100. doi: 10.1007/BF02093506.

[8]

S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc., 57 (1998), 377-385. doi: 10.1017/S0004972700031786.

[9]

S. S. Dragomir, J. E. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341.

[10]

A. Eberhard and C. E. M. Pearce, Class-inclusion properties for convex functions, in "Progress in Optimization" (Perth 1998), Appl. Optim., Kluwer Acad. Publ., Dordrecht, 39 (2000), 129-133.

[11]

N. Hadjisavvas, Hadamard-type inequalities for quasiconvex functions, J. Inequal. Pure Appl. Math., 4 (2003), 6 pp. (electronic).

[12]

D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, An. Univ. Craiova Ser. Mat. Inform., 34 (2007), 83-88.

[13]

M. Jovanović, Some inequalities for strong quasiconvex functions, Glas. Mat. Ser. III, 24 (1989), 25-29.

[14]

M. Merkle, Jensen's inequality for multivariate medians, J. Math. Anal. Appl., 370 (2010), 258-269. doi: 10.1016/j.jmaa.2010.04.033.

[15]

C. E. M. Pearce, Quasiconvexity, fractional programming and extremal traffic congestion, in "Frontiers in Global Optimization," Kluwer, Dordrecht, "Nonlinear Optimization and its Applications", 74 (2004), 403-409.

[16]

C. E. M. Pearce and A. M. Rubinov, $P$-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Applic., 240 (1999), 92-104. doi: 10.1006/jmaa.1999.6593.

[17]

A. M. Rubinov and J. Dutta, Hadamard type inequality for quasiconvex functions in higher dimensions, J. Math. Anal. Appl., 270 (2002), 80-91. doi: 10.1016/S0022-247X(02)00050-1.

[18]

M. Wagner, Jensen's inequality for the lower semicontinuous quasiconvex envelope and relaxation of multidimensional control problems, J. Math. Anal. Appl., 355 (2009), 606-619. doi: 10.1016/j.jmaa.2009.01.059.

show all references

References:
[1]

M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. Math, 41 (2010), 353-359.

[2]

M. Alomari, M. Darus and U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225-232. doi: 10.1016/j.camwa.2009.08.002.

[3]

S. S. Dragomir, Two mappings associated with Jensen's inequality, Extracta Math., 8 (1993), 102-105.

[4]

S. S. Dragomir and D. M. Milošević, Two mappings in connection to Jensen's inequality, Zb. Rad. (Krajujevac), 15 (1994), 65-73.

[5]

S. S. Dragomir and D. M. Milošević, Two mappings in connection to Jensen's inequality, Math. Balkanica (N.S.), 9 (1995), 3-9.

[6]

S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin, Indian J. Math., 39 (1997), 1-9.

[7]

S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin, Periodica Math. Hungar., 33 (1996), 93-100. doi: 10.1007/BF02093506.

[8]

S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc., 57 (1998), 377-385. doi: 10.1017/S0004972700031786.

[9]

S. S. Dragomir, J. E. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341.

[10]

A. Eberhard and C. E. M. Pearce, Class-inclusion properties for convex functions, in "Progress in Optimization" (Perth 1998), Appl. Optim., Kluwer Acad. Publ., Dordrecht, 39 (2000), 129-133.

[11]

N. Hadjisavvas, Hadamard-type inequalities for quasiconvex functions, J. Inequal. Pure Appl. Math., 4 (2003), 6 pp. (electronic).

[12]

D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, An. Univ. Craiova Ser. Mat. Inform., 34 (2007), 83-88.

[13]

M. Jovanović, Some inequalities for strong quasiconvex functions, Glas. Mat. Ser. III, 24 (1989), 25-29.

[14]

M. Merkle, Jensen's inequality for multivariate medians, J. Math. Anal. Appl., 370 (2010), 258-269. doi: 10.1016/j.jmaa.2010.04.033.

[15]

C. E. M. Pearce, Quasiconvexity, fractional programming and extremal traffic congestion, in "Frontiers in Global Optimization," Kluwer, Dordrecht, "Nonlinear Optimization and its Applications", 74 (2004), 403-409.

[16]

C. E. M. Pearce and A. M. Rubinov, $P$-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Applic., 240 (1999), 92-104. doi: 10.1006/jmaa.1999.6593.

[17]

A. M. Rubinov and J. Dutta, Hadamard type inequality for quasiconvex functions in higher dimensions, J. Math. Anal. Appl., 270 (2002), 80-91. doi: 10.1016/S0022-247X(02)00050-1.

[18]

M. Wagner, Jensen's inequality for the lower semicontinuous quasiconvex envelope and relaxation of multidimensional control problems, J. Math. Anal. Appl., 355 (2009), 606-619. doi: 10.1016/j.jmaa.2009.01.059.

[1]

Leandro M. Del Pezzo, Nicolás Frevenza, Julio D. Rossi. Convex and quasiconvex functions in metric graphs. Networks and Heterogeneous Media, 2021, 16 (4) : 591-607. doi: 10.3934/nhm.2021019

[2]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial and Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[3]

Anat Amir. Sharpness of Zapolsky's inequality for quasi-states and Poisson brackets. Electronic Research Announcements, 2011, 18: 61-68. doi: 10.3934/era.2011.18.61

[4]

Kewei Zhang. On non-negative quasiconvex functions with quasimonotone gradients and prescribed zero sets. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 353-366. doi: 10.3934/dcds.2008.21.353

[5]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

[6]

Emmanuel N. Barron, Rafal Goebel, Robert R. Jensen. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1693-1706. doi: 10.3934/dcdsb.2012.17.1693

[7]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[8]

Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945

[9]

Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155

[10]

Shu-Lin Lyu. On the Hermite--Hadamard inequality for convex functions of two variables. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 1-8. doi: 10.3934/naco.2014.4.1

[11]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[12]

Ahmet Sahiner, Gulden Kapusuz, Nurullah Yilmaz. A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 161-173. doi: 10.3934/naco.2016006

[13]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[14]

Pierdomenico Pepe. A nonlinear version of Halanay's inequality for the uniform convergence to the origin. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021045

[15]

Guodong Ma, Jinbao Jian. A QP-free algorithm of quasi-strongly sub-feasible directions for inequality constrained optimization. Journal of Industrial and Management Optimization, 2015, 11 (1) : 307-328. doi: 10.3934/jimo.2015.11.307

[16]

Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523

[17]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[18]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[19]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[20]

S. S. Dragomir, I. Gomm. Some new bounds for two mappings related to the Hermite-Hadamard inequality for convex functions. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 271-278. doi: 10.3934/naco.2012.2.271

 Impact Factor: 

Metrics

  • PDF downloads (194)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]