2012, 2(4): 669-693. doi: 10.3934/naco.2012.2.669

The integrated size and price optimization problem

1. 

Universität Bayreuth, 95440 Bayreuth, Germany

2. 

Universität Bayreuth, 95440 Bayreuth, Germany, Germany

Received  December 2011 Revised  October 2012 Published  November 2012

We present the Integrated Size and Price Optimization Problem (ISPO) for a fashion discounter with many branches. Based on a two-stage stochastic programming model with recourse, we develop an exact algorithm and a production-compliant heuristic that produces small optimality gaps. In a field study we show that a distribution of supply over branches and sizes based on ISPO solutions is significantly better than a one-stage optimization of the distribution ignoring the possibility of optimal pricing.
Citation: Miriam Kiessling, Sascha Kurz, Jörg Rambau. The integrated size and price optimization problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 669-693. doi: 10.3934/naco.2012.2.669
References:
[1]

Elodie Adida and Georgia Perakis, A robust optimization approach to dynamic pricing and inventory control with no backorders, Math. Program., 107 (2006), 97-129. doi: 10.1007/s10107-005-0681-5.  Google Scholar

[2]

Elodie Adida and Georgia Perakis, Dynamic pricing and inventory control: Uncertainty and competition, Oper. Res., 58 (2010), 289-302. doi: 10.1287/opre.1090.0718.  Google Scholar

[3]

Dimitris Bertsimas and Sanne de Boer, Dynamic pricing and inventory control for multiple products, JRPM, 3 (2005), 303-319. doi: 10.1057/palgrave.rpm.5170117.  Google Scholar

[4]

John R. Birge and Francois Louveaux, "Introduction To Stochastic Programming," 2nd ed, Springer Series in Operations Research and Financial Engineering, New York, 2011. doi: 10.1007/978-1-4614-0237-4.  Google Scholar

[5]

Gabriel Bitran and Reneé Caldentey, An overview of pricing models for revenue management, MSOM, 5 (2003), 203-229. doi: 10.1287/msom.5.3.203.16031.  Google Scholar

[6]

Lap M. A. Chan, Zuo-Jun M. Shen, David Simchi-Levi and Julie Swann, Coordination of pricing and inventory decisions: A survey and classification, Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business Era, (2004), 335-392. Google Scholar

[7]

Andreas Christmann and Ingo Steinwart, "Support Vector Machines," Information Science and Statistics, Springer, 2008. Google Scholar

[8]

Antonio J. Conejo, Enrique Castillo, Roberto Minguez and Raquel Garcia-Bertrand, "Decomposition Techniques in Mathematical Programming: Engineering and Science Applications," Springer, 2010. Google Scholar

[9]

Awi Federgruen and Aliza Heching, Combined pricing and inventory control under uncertainty, Oper. Res., 47 (1999), 454-475. doi: 10.1287/opre.47.3.454.  Google Scholar

[10]

David Freedman, Robert Pisani and Roger Purves, "Statistics," 4th Edition, W. W. Norton & Company, 2007. Google Scholar

[11]

Constantin Gaul, Sascha Kurz and Jörg Rambau, On the lot-type design problem, Optim. Methods Softw., 25 (2010), 217-227. doi: 10.1080/10556780902965163.  Google Scholar

[12]

Guillermo Gallego and Garrett van Ryzin, Optimal dynamic pricing of inventories with stochastic demand over finite horizons, Manage. Sci., 40 (1994), 999-1020. doi: 10.1287/mnsc.40.8.999.  Google Scholar

[13]

Guillermo Gallego and Garrett van Ryzin, A multiproduct dynamic pricing problem and its applications to network yield management, Oper. Res., 45 (1997), 24-41. doi: 10.1287/opre.45.1.24.  Google Scholar

[14]

Lars Grüne and Jürgen Pannek, "Nonlinear Model Predictive Control," Communications and Control Engineering, Springer, 2011. doi: 10.1007/978-0-85729-501-9.  Google Scholar

[15]

Miriam Kießling, Sascha Kurz and Jörg Rambau, An exact column-generation approach for the lot-type design problem, Preprint, Universität Bayreuth, 2012. Google Scholar

[16]

Kaisa M. Miettinen, "Evolutionary Algorithms In Engineering & Computer Science," John Wiley & Sons LTD, 1999. Google Scholar

[17]

Alan L. Montgomery, The implementation challenge of pricing decision support systems for retail managers, Appl. Stoch. Models Bus. Ind., 21 (2005), 367-378. doi: 10.1002/asmb.572.  Google Scholar

[18]

Serguei Netessine, Dynamic pricing of inventory/capacity with infrequent price changes, Eur. J. Oper. Res., 174 (2006), 553-580. doi: 10.1016/j.ejor.2004.12.015.  Google Scholar

[19]

Frank Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin, 1 (1945), 80-83. doi: 10.2307/3001968.  Google Scholar

[20]

Rui Yin, Yossi Aviv, Amat Pazgal and Christopher S. Tang, Optimal markdown pricing: implications of inventory display formats in the presence of strategic customers, Manage. Sci., 55 (2009), 1391-1408. doi: 10.1287/mnsc.1090.1029.  Google Scholar

[21]

Wen Zhao and Yu-Sheng Zheng, Optimal dynamic pricing for perishable assets with nonhomogeneous demand, Manage. Sci., 46 (2000), 375-388. doi: 10.1287/mnsc.46.3.375.12063.  Google Scholar

show all references

References:
[1]

Elodie Adida and Georgia Perakis, A robust optimization approach to dynamic pricing and inventory control with no backorders, Math. Program., 107 (2006), 97-129. doi: 10.1007/s10107-005-0681-5.  Google Scholar

[2]

Elodie Adida and Georgia Perakis, Dynamic pricing and inventory control: Uncertainty and competition, Oper. Res., 58 (2010), 289-302. doi: 10.1287/opre.1090.0718.  Google Scholar

[3]

Dimitris Bertsimas and Sanne de Boer, Dynamic pricing and inventory control for multiple products, JRPM, 3 (2005), 303-319. doi: 10.1057/palgrave.rpm.5170117.  Google Scholar

[4]

John R. Birge and Francois Louveaux, "Introduction To Stochastic Programming," 2nd ed, Springer Series in Operations Research and Financial Engineering, New York, 2011. doi: 10.1007/978-1-4614-0237-4.  Google Scholar

[5]

Gabriel Bitran and Reneé Caldentey, An overview of pricing models for revenue management, MSOM, 5 (2003), 203-229. doi: 10.1287/msom.5.3.203.16031.  Google Scholar

[6]

Lap M. A. Chan, Zuo-Jun M. Shen, David Simchi-Levi and Julie Swann, Coordination of pricing and inventory decisions: A survey and classification, Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business Era, (2004), 335-392. Google Scholar

[7]

Andreas Christmann and Ingo Steinwart, "Support Vector Machines," Information Science and Statistics, Springer, 2008. Google Scholar

[8]

Antonio J. Conejo, Enrique Castillo, Roberto Minguez and Raquel Garcia-Bertrand, "Decomposition Techniques in Mathematical Programming: Engineering and Science Applications," Springer, 2010. Google Scholar

[9]

Awi Federgruen and Aliza Heching, Combined pricing and inventory control under uncertainty, Oper. Res., 47 (1999), 454-475. doi: 10.1287/opre.47.3.454.  Google Scholar

[10]

David Freedman, Robert Pisani and Roger Purves, "Statistics," 4th Edition, W. W. Norton & Company, 2007. Google Scholar

[11]

Constantin Gaul, Sascha Kurz and Jörg Rambau, On the lot-type design problem, Optim. Methods Softw., 25 (2010), 217-227. doi: 10.1080/10556780902965163.  Google Scholar

[12]

Guillermo Gallego and Garrett van Ryzin, Optimal dynamic pricing of inventories with stochastic demand over finite horizons, Manage. Sci., 40 (1994), 999-1020. doi: 10.1287/mnsc.40.8.999.  Google Scholar

[13]

Guillermo Gallego and Garrett van Ryzin, A multiproduct dynamic pricing problem and its applications to network yield management, Oper. Res., 45 (1997), 24-41. doi: 10.1287/opre.45.1.24.  Google Scholar

[14]

Lars Grüne and Jürgen Pannek, "Nonlinear Model Predictive Control," Communications and Control Engineering, Springer, 2011. doi: 10.1007/978-0-85729-501-9.  Google Scholar

[15]

Miriam Kießling, Sascha Kurz and Jörg Rambau, An exact column-generation approach for the lot-type design problem, Preprint, Universität Bayreuth, 2012. Google Scholar

[16]

Kaisa M. Miettinen, "Evolutionary Algorithms In Engineering & Computer Science," John Wiley & Sons LTD, 1999. Google Scholar

[17]

Alan L. Montgomery, The implementation challenge of pricing decision support systems for retail managers, Appl. Stoch. Models Bus. Ind., 21 (2005), 367-378. doi: 10.1002/asmb.572.  Google Scholar

[18]

Serguei Netessine, Dynamic pricing of inventory/capacity with infrequent price changes, Eur. J. Oper. Res., 174 (2006), 553-580. doi: 10.1016/j.ejor.2004.12.015.  Google Scholar

[19]

Frank Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin, 1 (1945), 80-83. doi: 10.2307/3001968.  Google Scholar

[20]

Rui Yin, Yossi Aviv, Amat Pazgal and Christopher S. Tang, Optimal markdown pricing: implications of inventory display formats in the presence of strategic customers, Manage. Sci., 55 (2009), 1391-1408. doi: 10.1287/mnsc.1090.1029.  Google Scholar

[21]

Wen Zhao and Yu-Sheng Zheng, Optimal dynamic pricing for perishable assets with nonhomogeneous demand, Manage. Sci., 46 (2000), 375-388. doi: 10.1287/mnsc.46.3.375.12063.  Google Scholar

[1]

Joseph Geunes, Panos M. Pardalos. Introduction to the Special Issue on Supply Chain Optimization. Journal of Industrial & Management Optimization, 2007, 3 (1) : i-ii. doi: 10.3934/jimo.2007.3.1i

[2]

Xiaohui Ren, Daofang Chang, Jin Shen. Optimization of the product service supply chain under the influence of presale services. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021130

[3]

Tsan-Ming Choi. Quick response in fashion supply chains with dual information updating. Journal of Industrial & Management Optimization, 2006, 2 (3) : 255-268. doi: 10.3934/jimo.2006.2.255

[4]

Zhiping Chen, Youpan Han. Continuity and stability of two-stage stochastic programs with quadratic continuous recourse. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 197-209. doi: 10.3934/naco.2015.5.197

[5]

Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1831-1856. doi: 10.3934/jimo.2018125

[6]

Qiong Liu, Ahmad Reza Rezaei, Kuan Yew Wong, Mohammad Mahdi Azami. Integrated modeling and optimization of material flow and financial flow of supply chain network considering financial ratios. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 113-132. doi: 10.3934/naco.2019009

[7]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[8]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[9]

Abdolhossein Sadrnia, Amirreza Payandeh Sani, Najme Roghani Langarudi. Sustainable closed-loop supply chain network optimization for construction machinery recovering. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2389-2414. doi: 10.3934/jimo.2020074

[10]

Ziyuan Zhang, Liying Yu. Joint emission reduction dynamic optimization and coordination in the supply chain considering fairness concern and reference low-carbon effect. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021155

[11]

Jean-François Clouet, François Golse, Marjolaine Puel, Rémi Sentis. On the slowing down of charged particles in a binary stochastic mixture. Kinetic & Related Models, 2008, 1 (3) : 387-404. doi: 10.3934/krm.2008.1.387

[12]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control & Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[13]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115

[14]

Mingzheng Wang, M. Montaz Ali, Guihua Lin. Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks. Journal of Industrial & Management Optimization, 2011, 7 (2) : 317-345. doi: 10.3934/jimo.2011.7.317

[15]

Chandan Pathak, Saswati Mukherjee, Santanu Kumar Ghosh, Sudhansu Khanra. A three echelon supply chain model with stochastic demand dependent on price, quality and energy reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021098

[16]

Fatemeh Kangi, Seyed Hamid Reza Pasandideh, Esmaeil Mehdizadeh, Hamed Soleimani. The optimization of a multi-period multi-product closed-loop supply chain network with cross-docking delivery strategy. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021118

[17]

René Carmona, Kenza Hamidouche, Mathieu Laurière, Zongjun Tan. Linear-quadratic zero-sum mean-field type games: Optimality conditions and policy optimization. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021023

[18]

Ralf Banisch, Carsten Hartmann. Addendum to "A sparse Markov chain approximation of LQ-type stochastic control problems". Mathematical Control & Related Fields, 2017, 7 (4) : 623-623. doi: 10.3934/mcrf.2017023

[19]

Roger Temam. Mark Vishik and his work. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : i-vi. doi: 10.3934/dcds.2004.10.1i

[20]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

 Impact Factor: 

Metrics

  • PDF downloads (135)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]