2012, 2(4): 713-738. doi: 10.3934/naco.2012.2.713

Two-stage stochastic programs: Integer variables, dominance relations and PDE constraints

1. 

Department of Mathematics, University of Duisburg-Essen, Campus Duisburg, Lotharstr. 65, D-47048 Duisburg, Germany

Received  December 2011 Revised  November 2012 Published  November 2012

From a unified point-of-view, we present some recent developments in two-stage stochastic programming. Our discussion includes stochastic programs with integer variables, stochastic programs with dominance constraints, and PDE constrained stochastic programs.
Citation: Rüdiger Schultz. Two-stage stochastic programs: Integer variables, dominance relations and PDE constraints. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 713-738. doi: 10.3934/naco.2012.2.713
References:
[1]

B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammers, "Non-linear Parametric Optimization," Akademie-Verlag, Berlin, 1983.

[2]

B. Bank and R. Mandel, "Parametric Integer Optimization," Akademie-Verlag, Berlin 1988.

[3]

A. Ben-Tal, L. El-Ghaoui and A. Nemirovski, "Robust Optimization," Princeton University Press, Princeton and Oxford, 2009.

[4]

J. R. Birge and F. Louveaux, "Introduction to Stochastic Programming," Springer-Verlag, New York, 1997.

[5]

C. E. Blair and R. G. Jeroslow, The value function of a mixed integer program: I, Discrete Mathematics, 19 (1977), 121-138.

[6]

C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming, Operations Research Letters, 24 (1999), 37-45.

[7]

M. Carrión, U. Gotzes and R. Schultz, Risk aversion for an electricity retailer with second-order stochastic dominance constraints, Computational Management Science, 6 (2009), 233-250.

[8]

P. G. Ciarlet, "Mathematical Elasticity Volume I: Three-Dimensional Elasticity," Studies in Mathematics and its Applications, Vol. 20, North-Holland, 1988.

[9]

, CPLEX Callable Library-9.1.3, ILOG, 2008. Available from:, , (). 

[10]

S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Shape optimization under uncertainty - a stochastic programming perspective, SIAM Journal on Optimization, 19 (2008), 1610-1632.

[11]

S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization, SIAM Journal on Control and Optimization, 49 (2011), 927-947.

[12]

M. C. Delfour and J. P. Zolésio, "Shapes and Geometries: Analysis, Differential Calculus and Optimization," SIAM, Philadelphia, 2001.

[13]

D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints, SIAM Journal on Optimization, 14 (2003), 548-566.

[14]

D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization with nonlinear dominance constraints, Mathematical Programming, 99 (2004), 329-350. doi: 10.1007/s10107-003-0453-z.

[15]

R. Gollmer, U. Gotzes and R. Schultz, A note on second-order stochastic dominance constraints induced by mixed-integer linear recourse, Mathematical Programming, 127 (2011), 179-190.

[16]

R. Gollmer, F. Neise and R. Schultz, Stochastic programs with first-order dominance constraints induced by mixed-integer linear recourse, SIAM Journal on Optimization, 19 (2008), 552-571.

[17]

U. Gotzes and F. Neise, "User's Guide to ddsip.vSD - A C Package for the Dual Decomposition of Stochastic Programs with Dominance Constraints Induced by Mixed-Integer Linear Recourse," Department of Mathematics, University of Duisburg-Essen, 2008.

[18]

E. Handschin, F. Neise, H. Neumann and R. Schultz, Optimal operation of dispersed generation under uncertainty using mathematical programming, International Journal of Electrical Power & Energy Systems, 28 (2006), 618-626.

[19]

A. Märkert and R. Gollmer, "User's Guide to ddsip - A C Package for the Dual Decomposition of Two-Stage Stochastic Programs with Mixed-Integer Recourse," Department of Mathematics, University of Duisburg-Essen, 2008; Available from: http://www.neos-server.org/neos/solvers/slp:ddsip/MPS.html.

[20]

A. Müller and D. Stoyan, "Comparison Methods for Stochastic Models and Risks," Wiley, Chichester, 2002.

[21]

G. L. Nemhauser and L. A. Wolsey, "Integer and Combinatorial Optimization," Wiley, New York 1988.

[22]

A. Prékopa, "Stochastic Programming," Kluwer, Dordrecht, 1995.

[23]

A. Ruszczyński and A. Shapiro, "Stochastic Programming," Handbooks in Operations Research and Management Science, Elsevier, Amsterdam, 10 (2003).

[24]

R. Schultz, Continuity properties of expectation functions in stochastic integer programming, Mathematics of Operations Research, 18 (1993), 578-589.

[25]

R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse, Mathematical Programming, 70 (1995), 73-89.

[26]

R. Schultz, Stochastic programming with integer variables, Mathematical Programming, 97 (2003), 285-309.

[27]

R. Schultz and S. Tiedemann, Risk Aversion via Excess Probabilities in Stochastic Programs with Mixed-Integer Recourse, SIAM Journal on Optimization, 14 (2003), 115-138.

[28]

A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory," SIAM-MPS, Philadelphia, 2009.

[29]

J. Sokołowski and J. P. Zolésio, "Introduction to Shape Optimization: Shape Sensitivity Analysis," Springer, 1992.

show all references

References:
[1]

B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammers, "Non-linear Parametric Optimization," Akademie-Verlag, Berlin, 1983.

[2]

B. Bank and R. Mandel, "Parametric Integer Optimization," Akademie-Verlag, Berlin 1988.

[3]

A. Ben-Tal, L. El-Ghaoui and A. Nemirovski, "Robust Optimization," Princeton University Press, Princeton and Oxford, 2009.

[4]

J. R. Birge and F. Louveaux, "Introduction to Stochastic Programming," Springer-Verlag, New York, 1997.

[5]

C. E. Blair and R. G. Jeroslow, The value function of a mixed integer program: I, Discrete Mathematics, 19 (1977), 121-138.

[6]

C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming, Operations Research Letters, 24 (1999), 37-45.

[7]

M. Carrión, U. Gotzes and R. Schultz, Risk aversion for an electricity retailer with second-order stochastic dominance constraints, Computational Management Science, 6 (2009), 233-250.

[8]

P. G. Ciarlet, "Mathematical Elasticity Volume I: Three-Dimensional Elasticity," Studies in Mathematics and its Applications, Vol. 20, North-Holland, 1988.

[9]

, CPLEX Callable Library-9.1.3, ILOG, 2008. Available from:, , (). 

[10]

S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Shape optimization under uncertainty - a stochastic programming perspective, SIAM Journal on Optimization, 19 (2008), 1610-1632.

[11]

S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization, SIAM Journal on Control and Optimization, 49 (2011), 927-947.

[12]

M. C. Delfour and J. P. Zolésio, "Shapes and Geometries: Analysis, Differential Calculus and Optimization," SIAM, Philadelphia, 2001.

[13]

D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints, SIAM Journal on Optimization, 14 (2003), 548-566.

[14]

D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization with nonlinear dominance constraints, Mathematical Programming, 99 (2004), 329-350. doi: 10.1007/s10107-003-0453-z.

[15]

R. Gollmer, U. Gotzes and R. Schultz, A note on second-order stochastic dominance constraints induced by mixed-integer linear recourse, Mathematical Programming, 127 (2011), 179-190.

[16]

R. Gollmer, F. Neise and R. Schultz, Stochastic programs with first-order dominance constraints induced by mixed-integer linear recourse, SIAM Journal on Optimization, 19 (2008), 552-571.

[17]

U. Gotzes and F. Neise, "User's Guide to ddsip.vSD - A C Package for the Dual Decomposition of Stochastic Programs with Dominance Constraints Induced by Mixed-Integer Linear Recourse," Department of Mathematics, University of Duisburg-Essen, 2008.

[18]

E. Handschin, F. Neise, H. Neumann and R. Schultz, Optimal operation of dispersed generation under uncertainty using mathematical programming, International Journal of Electrical Power & Energy Systems, 28 (2006), 618-626.

[19]

A. Märkert and R. Gollmer, "User's Guide to ddsip - A C Package for the Dual Decomposition of Two-Stage Stochastic Programs with Mixed-Integer Recourse," Department of Mathematics, University of Duisburg-Essen, 2008; Available from: http://www.neos-server.org/neos/solvers/slp:ddsip/MPS.html.

[20]

A. Müller and D. Stoyan, "Comparison Methods for Stochastic Models and Risks," Wiley, Chichester, 2002.

[21]

G. L. Nemhauser and L. A. Wolsey, "Integer and Combinatorial Optimization," Wiley, New York 1988.

[22]

A. Prékopa, "Stochastic Programming," Kluwer, Dordrecht, 1995.

[23]

A. Ruszczyński and A. Shapiro, "Stochastic Programming," Handbooks in Operations Research and Management Science, Elsevier, Amsterdam, 10 (2003).

[24]

R. Schultz, Continuity properties of expectation functions in stochastic integer programming, Mathematics of Operations Research, 18 (1993), 578-589.

[25]

R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse, Mathematical Programming, 70 (1995), 73-89.

[26]

R. Schultz, Stochastic programming with integer variables, Mathematical Programming, 97 (2003), 285-309.

[27]

R. Schultz and S. Tiedemann, Risk Aversion via Excess Probabilities in Stochastic Programs with Mixed-Integer Recourse, SIAM Journal on Optimization, 14 (2003), 115-138.

[28]

A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory," SIAM-MPS, Philadelphia, 2009.

[29]

J. Sokołowski and J. P. Zolésio, "Introduction to Shape Optimization: Shape Sensitivity Analysis," Springer, 1992.

[1]

René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363

[2]

Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2783-2804. doi: 10.3934/jimo.2020094

[3]

Elham Mardaneh, Ryan Loxton, Qun Lin, Phil Schmidli. A mixed-integer linear programming model for optimal vessel scheduling in offshore oil and gas operations. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1601-1623. doi: 10.3934/jimo.2017009

[4]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial and Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[5]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[6]

Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353

[7]

Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1027-1039. doi: 10.3934/jimo.2011.7.1027

[8]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[9]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071

[10]

Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 115-132. doi: 10.3934/naco.2014.4.115

[11]

Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8 (3) : 783-802. doi: 10.3934/nhm.2013.8.783

[12]

Mahdi Roozbeh, Saman Babaie–Kafaki, Zohre Aminifard. Two penalized mixed–integer nonlinear programming approaches to tackle multicollinearity and outliers effects in linear regression models. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3475-3491. doi: 10.3934/jimo.2020128

[13]

Fanwen Meng, Kiok Liang Teow, Kelvin Wee Sheng Teo, Chee Kheong Ooi, Seow Yian Tay. Predicting 72-hour reattendance in emergency departments using discriminant analysis via mixed integer programming with electronic medical records. Journal of Industrial and Management Optimization, 2019, 15 (2) : 947-962. doi: 10.3934/jimo.2018079

[14]

Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial and Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431

[15]

Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021169

[16]

Zhenhuan Yang, Wei Shen, Yiming Ying, Xiaoming Yuan. Stochastic AUC optimization with general loss. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4191-4212. doi: 10.3934/cpaa.2020188

[17]

Songqiang Qiu, Zhongwen Chen. An adaptively regularized sequential quadratic programming method for equality constrained optimization. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2675-2701. doi: 10.3934/jimo.2019075

[18]

Zhenbo Wang, Shu-Cherng Fang, David Y. Gao, Wenxun Xing. Global extremal conditions for multi-integer quadratic programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 213-225. doi: 10.3934/jimo.2008.4.213

[19]

Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial and Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67

[20]

Mohamed A. Tawhid, Ahmed F. Ali. A simplex grey wolf optimizer for solving integer programming and minimax problems. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 301-323. doi: 10.3934/naco.2017020

 Impact Factor: 

Metrics

  • PDF downloads (134)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]