2012, 2(4): 713-738. doi: 10.3934/naco.2012.2.713

Two-stage stochastic programs: Integer variables, dominance relations and PDE constraints

1. 

Department of Mathematics, University of Duisburg-Essen, Campus Duisburg, Lotharstr. 65, D-47048 Duisburg, Germany

Received  December 2011 Revised  November 2012 Published  November 2012

From a unified point-of-view, we present some recent developments in two-stage stochastic programming. Our discussion includes stochastic programs with integer variables, stochastic programs with dominance constraints, and PDE constrained stochastic programs.
Citation: Rüdiger Schultz. Two-stage stochastic programs: Integer variables, dominance relations and PDE constraints. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 713-738. doi: 10.3934/naco.2012.2.713
References:
[1]

B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammers, "Non-linear Parametric Optimization,", Akademie-Verlag, (1983).   Google Scholar

[2]

B. Bank and R. Mandel, "Parametric Integer Optimization,", Akademie-Verlag, (1988).   Google Scholar

[3]

A. Ben-Tal, L. El-Ghaoui and A. Nemirovski, "Robust Optimization,", Princeton University Press, (2009).   Google Scholar

[4]

J. R. Birge and F. Louveaux, "Introduction to Stochastic Programming,", Springer-Verlag, (1997).   Google Scholar

[5]

C. E. Blair and R. G. Jeroslow, The value function of a mixed integer program: I,, Discrete Mathematics, 19 (1977), 121.   Google Scholar

[6]

C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming,, Operations Research Letters, 24 (1999), 37.   Google Scholar

[7]

M. Carrión, U. Gotzes and R. Schultz, Risk aversion for an electricity retailer with second-order stochastic dominance constraints,, Computational Management Science, 6 (2009), 233.   Google Scholar

[8]

P. G. Ciarlet, "Mathematical Elasticity Volume I: Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, (1988).   Google Scholar

[9]

, CPLEX Callable Library-9.1.3, ILOG, 2008. Available from:, , ().   Google Scholar

[10]

S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Shape optimization under uncertainty - a stochastic programming perspective,, SIAM Journal on Optimization, 19 (2008), 1610.   Google Scholar

[11]

S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization,, SIAM Journal on Control and Optimization, 49 (2011), 927.   Google Scholar

[12]

M. C. Delfour and J. P. Zolésio, "Shapes and Geometries: Analysis, Differential Calculus and Optimization,", SIAM, (2001).   Google Scholar

[13]

D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints,, SIAM Journal on Optimization, 14 (2003), 548.   Google Scholar

[14]

D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization with nonlinear dominance constraints,, Mathematical Programming, 99 (2004), 329.  doi: 10.1007/s10107-003-0453-z.  Google Scholar

[15]

R. Gollmer, U. Gotzes and R. Schultz, A note on second-order stochastic dominance constraints induced by mixed-integer linear recourse,, Mathematical Programming, 127 (2011), 179.   Google Scholar

[16]

R. Gollmer, F. Neise and R. Schultz, Stochastic programs with first-order dominance constraints induced by mixed-integer linear recourse,, SIAM Journal on Optimization, 19 (2008), 552.   Google Scholar

[17]

U. Gotzes and F. Neise, "User's Guide to ddsip.vSD - A C Package for the Dual Decomposition of Stochastic Programs with Dominance Constraints Induced by Mixed-Integer Linear Recourse,", Department of Mathematics, (2008).   Google Scholar

[18]

E. Handschin, F. Neise, H. Neumann and R. Schultz, Optimal operation of dispersed generation under uncertainty using mathematical programming,, International Journal of Electrical Power & Energy Systems, 28 (2006), 618.   Google Scholar

[19]

A. Märkert and R. Gollmer, "User's Guide to ddsip - A C Package for the Dual Decomposition of Two-Stage Stochastic Programs with Mixed-Integer Recourse,", Department of Mathematics, (2008).   Google Scholar

[20]

A. Müller and D. Stoyan, "Comparison Methods for Stochastic Models and Risks,", Wiley, (2002).   Google Scholar

[21]

G. L. Nemhauser and L. A. Wolsey, "Integer and Combinatorial Optimization,", Wiley, (1988).   Google Scholar

[22]

A. Prékopa, "Stochastic Programming,", Kluwer, (1995).   Google Scholar

[23]

A. Ruszczyński and A. Shapiro, "Stochastic Programming,", Handbooks in Operations Research and Management Science, 10 (2003).   Google Scholar

[24]

R. Schultz, Continuity properties of expectation functions in stochastic integer programming,, Mathematics of Operations Research, 18 (1993), 578.   Google Scholar

[25]

R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse,, Mathematical Programming, 70 (1995), 73.   Google Scholar

[26]

R. Schultz, Stochastic programming with integer variables,, Mathematical Programming, 97 (2003), 285.   Google Scholar

[27]

R. Schultz and S. Tiedemann, Risk Aversion via Excess Probabilities in Stochastic Programs with Mixed-Integer Recourse,, SIAM Journal on Optimization, 14 (2003), 115.   Google Scholar

[28]

A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory,", SIAM-MPS, (2009).   Google Scholar

[29]

J. Sokołowski and J. P. Zolésio, "Introduction to Shape Optimization: Shape Sensitivity Analysis,", Springer, (1992).   Google Scholar

show all references

References:
[1]

B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammers, "Non-linear Parametric Optimization,", Akademie-Verlag, (1983).   Google Scholar

[2]

B. Bank and R. Mandel, "Parametric Integer Optimization,", Akademie-Verlag, (1988).   Google Scholar

[3]

A. Ben-Tal, L. El-Ghaoui and A. Nemirovski, "Robust Optimization,", Princeton University Press, (2009).   Google Scholar

[4]

J. R. Birge and F. Louveaux, "Introduction to Stochastic Programming,", Springer-Verlag, (1997).   Google Scholar

[5]

C. E. Blair and R. G. Jeroslow, The value function of a mixed integer program: I,, Discrete Mathematics, 19 (1977), 121.   Google Scholar

[6]

C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming,, Operations Research Letters, 24 (1999), 37.   Google Scholar

[7]

M. Carrión, U. Gotzes and R. Schultz, Risk aversion for an electricity retailer with second-order stochastic dominance constraints,, Computational Management Science, 6 (2009), 233.   Google Scholar

[8]

P. G. Ciarlet, "Mathematical Elasticity Volume I: Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, (1988).   Google Scholar

[9]

, CPLEX Callable Library-9.1.3, ILOG, 2008. Available from:, , ().   Google Scholar

[10]

S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Shape optimization under uncertainty - a stochastic programming perspective,, SIAM Journal on Optimization, 19 (2008), 1610.   Google Scholar

[11]

S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization,, SIAM Journal on Control and Optimization, 49 (2011), 927.   Google Scholar

[12]

M. C. Delfour and J. P. Zolésio, "Shapes and Geometries: Analysis, Differential Calculus and Optimization,", SIAM, (2001).   Google Scholar

[13]

D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints,, SIAM Journal on Optimization, 14 (2003), 548.   Google Scholar

[14]

D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization with nonlinear dominance constraints,, Mathematical Programming, 99 (2004), 329.  doi: 10.1007/s10107-003-0453-z.  Google Scholar

[15]

R. Gollmer, U. Gotzes and R. Schultz, A note on second-order stochastic dominance constraints induced by mixed-integer linear recourse,, Mathematical Programming, 127 (2011), 179.   Google Scholar

[16]

R. Gollmer, F. Neise and R. Schultz, Stochastic programs with first-order dominance constraints induced by mixed-integer linear recourse,, SIAM Journal on Optimization, 19 (2008), 552.   Google Scholar

[17]

U. Gotzes and F. Neise, "User's Guide to ddsip.vSD - A C Package for the Dual Decomposition of Stochastic Programs with Dominance Constraints Induced by Mixed-Integer Linear Recourse,", Department of Mathematics, (2008).   Google Scholar

[18]

E. Handschin, F. Neise, H. Neumann and R. Schultz, Optimal operation of dispersed generation under uncertainty using mathematical programming,, International Journal of Electrical Power & Energy Systems, 28 (2006), 618.   Google Scholar

[19]

A. Märkert and R. Gollmer, "User's Guide to ddsip - A C Package for the Dual Decomposition of Two-Stage Stochastic Programs with Mixed-Integer Recourse,", Department of Mathematics, (2008).   Google Scholar

[20]

A. Müller and D. Stoyan, "Comparison Methods for Stochastic Models and Risks,", Wiley, (2002).   Google Scholar

[21]

G. L. Nemhauser and L. A. Wolsey, "Integer and Combinatorial Optimization,", Wiley, (1988).   Google Scholar

[22]

A. Prékopa, "Stochastic Programming,", Kluwer, (1995).   Google Scholar

[23]

A. Ruszczyński and A. Shapiro, "Stochastic Programming,", Handbooks in Operations Research and Management Science, 10 (2003).   Google Scholar

[24]

R. Schultz, Continuity properties of expectation functions in stochastic integer programming,, Mathematics of Operations Research, 18 (1993), 578.   Google Scholar

[25]

R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse,, Mathematical Programming, 70 (1995), 73.   Google Scholar

[26]

R. Schultz, Stochastic programming with integer variables,, Mathematical Programming, 97 (2003), 285.   Google Scholar

[27]

R. Schultz and S. Tiedemann, Risk Aversion via Excess Probabilities in Stochastic Programs with Mixed-Integer Recourse,, SIAM Journal on Optimization, 14 (2003), 115.   Google Scholar

[28]

A. Shapiro, D. Dentcheva and A. Ruszczyński, "Lectures on Stochastic Programming: Modeling and Theory,", SIAM-MPS, (2009).   Google Scholar

[29]

J. Sokołowski and J. P. Zolésio, "Introduction to Shape Optimization: Shape Sensitivity Analysis,", Springer, (1992).   Google Scholar

[1]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[4]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[5]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[8]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[9]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[10]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021079

[11]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[12]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[13]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[14]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[15]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[16]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[17]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[18]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[19]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[20]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

 Impact Factor: 

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]