
Previous Article
Partial eigenvalue assignment with time delay robustness
 NACO Home
 This Issue

Next Article
Preface
A twophase method for multidimensional number partitioning problem
1.  Institute of Communications Engineering, PLA University of Science and Technology, Nanjing, 210007, China, China 
References:
[1] 
M. Diaby, Linear programming formulation of the set partitioning problem, Int. J. Operational Research, 8 (2010), 399427. 
[2] 
M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NPCompleteness," W. H. Freeman, New York, 1979. 
[3] 
N. Karmarkar and R. M. Karp, The differencing method of set partitioning, Technical Report UCB/CSD 82/113, Computer Science Division, University of California, Berkeley, (1982). 
[4] 
J. Kojić, Integer linear programming model for multidimensional twoway number partitioning problem, Computer and Mathematics with Applications, 60 (2010), 23022308. doi: 10.1016/j.camwa.2010.08.024. 
[5] 
R. E. Korf, Multiway number partitioning, in "Proceedings of Proceedings of the International Joint Conference on Artificial Intelligence," Pasadena, California, USA, (2009), 538543. 
[6] 
R. E. Korf, Objective functions for multiway number partitioning, in "Proceedings of the Third Annual Symposium on Combinatorial Search," Atlanta, Georgia, USA, 2010, Available from: http://www.aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2098. 
[7] 
R. E. Korf, A complete anytime algorithm for number partitioning, Artificial Intelligence, 106 (1998), 181203. doi: 10.1016/S00043702(98)000861. 
[8] 
R. E. Korf, From approximate to optimal solutions: A case study of number partitioning, in "Proceedings of Proceedings of the International Joint Conference on Artificial Intelligence," Montreal, Canada, (1995), 266272. 
[9] 
M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of secondorder cone programming, Linear Algebra and its Applications, 284 (1998), 193228. doi: 10.1016/S00243795(98)100320. 
show all references
References:
[1] 
M. Diaby, Linear programming formulation of the set partitioning problem, Int. J. Operational Research, 8 (2010), 399427. 
[2] 
M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NPCompleteness," W. H. Freeman, New York, 1979. 
[3] 
N. Karmarkar and R. M. Karp, The differencing method of set partitioning, Technical Report UCB/CSD 82/113, Computer Science Division, University of California, Berkeley, (1982). 
[4] 
J. Kojić, Integer linear programming model for multidimensional twoway number partitioning problem, Computer and Mathematics with Applications, 60 (2010), 23022308. doi: 10.1016/j.camwa.2010.08.024. 
[5] 
R. E. Korf, Multiway number partitioning, in "Proceedings of Proceedings of the International Joint Conference on Artificial Intelligence," Pasadena, California, USA, (2009), 538543. 
[6] 
R. E. Korf, Objective functions for multiway number partitioning, in "Proceedings of the Third Annual Symposium on Combinatorial Search," Atlanta, Georgia, USA, 2010, Available from: http://www.aaai.org/ocs/index.php/SOCS/SOCS10/paper/view/2098. 
[7] 
R. E. Korf, A complete anytime algorithm for number partitioning, Artificial Intelligence, 106 (1998), 181203. doi: 10.1016/S00043702(98)000861. 
[8] 
R. E. Korf, From approximate to optimal solutions: A case study of number partitioning, in "Proceedings of Proceedings of the International Joint Conference on Artificial Intelligence," Montreal, Canada, (1995), 266272. 
[9] 
M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of secondorder cone programming, Linear Algebra and its Applications, 284 (1998), 193228. doi: 10.1016/S00243795(98)100320. 
[1] 
TienFu Liang, HungWen Cheng. Multiobjective aggregate production planning decisions using twophase fuzzy goal programming method. Journal of Industrial and Management Optimization, 2011, 7 (2) : 365383. doi: 10.3934/jimo.2011.7.365 
[2] 
M. S. Lee, B. S. Goh, H. G. Harno, K. H. Lim. On a twophase approximate greatest descent method for nonlinear optimization with equality constraints. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 315326. doi: 10.3934/naco.2018020 
[3] 
Mahdi Roozbeh, Saman Babaie–Kafaki, Zohre Aminifard. Two penalized mixed–integer nonlinear programming approaches to tackle multicollinearity and outliers effects in linear regression models. Journal of Industrial and Management Optimization, 2021, 17 (6) : 34753491. doi: 10.3934/jimo.2020128 
[4] 
Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353362. doi: 10.3934/jimo.2008.4.353 
[5] 
Massimo Lanza de Cristoforis, aolo Musolino. A quasilinear heat transmission problem in a periodic twophase dilute composite. A functional analytic approach. Communications on Pure and Applied Analysis, 2014, 13 (6) : 25092542. doi: 10.3934/cpaa.2014.13.2509 
[6] 
Stefan Berres, Ricardo RuizBaier, Hartmut Schwandt, Elmer M. Tory. An adaptive finitevolume method for a model of twophase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401423. doi: 10.3934/nhm.2011.6.401 
[7] 
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic twophase flow model by a splittingup method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 11351170. doi: 10.3934/cpaa.2021010 
[8] 
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial and Management Optimization, 2021, 17 (1) : 117131. doi: 10.3934/jimo.2019102 
[9] 
Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the twophase Stefan problem. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 53795405. doi: 10.3934/dcds.2013.33.5379 
[10] 
Theodore Tachim Medjo. A twophase flow model with delays. Discrete and Continuous Dynamical Systems  B, 2017, 22 (9) : 32733294. doi: 10.3934/dcdsb.2017137 
[11] 
Marianne Korten, Charles N. Moore. Regularity for solutions of the twophase Stefan problem. Communications on Pure and Applied Analysis, 2008, 7 (3) : 591600. doi: 10.3934/cpaa.2008.7.591 
[12] 
Zhiguo Feng, KaFai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557566. doi: 10.3934/jimo.2014.10.557 
[13] 
T. Tachim Medjo. Averaging of an homogeneous twophase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 36653690. doi: 10.3934/dcds.2012.32.3665 
[14] 
Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of twophase flows with heat and mass transfer. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 23252347. doi: 10.3934/dcds.2015.35.2325 
[15] 
Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible twophase flows. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 139. doi: 10.3934/dcds.2010.28.1 
[16] 
Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic twophase free boundary problems. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 69616978. doi: 10.3934/dcds.2019239 
[17] 
Jie Jiang, Yinghua Li, Chun Liu. Twophase incompressible flows with variable density: An energetic variational approach. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 32433284. doi: 10.3934/dcds.2017138 
[18] 
V. S. Manoranjan, HongMing Yin, R. Showalter. On twophase Stefan problem arising from a microwave heating process. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 11551168. doi: 10.3934/dcds.2006.15.1155 
[19] 
Esther S. Daus, JosipaPina Milišić, Nicola Zamponi. Global existence for a twophase flow model with crossdiffusion. Discrete and Continuous Dynamical Systems  B, 2020, 25 (3) : 957979. doi: 10.3934/dcdsb.2019198 
[20] 
Theodore TachimMedjo. Optimal control of a twophase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335362. doi: 10.3934/mcrf.2016006 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]