Citation: |
[1] |
E. Blum and W. Oettli, "Mathematische Optimierung, Econometrics and Operations Research XX," Springer Verlag, 1975. |
[2] |
N. Bose and K. Boo, High-resolution image reconstruction with multisensors, Int. J. Imag. Syst. Tech, 9 (1998), 294-304.doi: 10.1002/(SICI)1098-1098(1998)9:4<294::AID-IMA11>3.0.CO;2-X. |
[3] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learning, 3 (2010), 1-122.doi: 10.1561/2200000016. |
[4] |
R. H. Chan, J. F. Yang and X. M. Yuan, Alternating direction method for image inpainting in wavelet domain, SIAM J. Imaging Sci., 4 (2011), 807-826.doi: 10.1137/100807247. |
[5] |
T. F. Chan and R. Glowinski, Finite element approximation and iterative solution of a class of mildly non-linear elliptic equations, Technical report, Stanford University, 1978. |
[6] |
C. H. Chen, B. S. He and X. M. Yuan, Matrix completion via alternating direction method, IMA J. Numer. Anal., 32 (2012), 227-245.doi: 10.1093/imanum/drq039. |
[7] |
J. Douglas and H. H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables, Tran. Amer. Math. Soc., 82 (1956), 421-439.doi: 10.1090/S0002-9947-1956-0084194-4. |
[8] |
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal points algorithm for maximal monotone operators, Math. Program., 55 (1992), 293-318.doi: 10.1007/BF01581204. |
[9] |
E. Esser, Applications of Lagrangian-Based alternating direction methods and connections to split Bregman, UCLA CAM Report 09-31, 2009. |
[10] |
M. Fortin and R. Glowinski, "Augmented Lagrangian Methods: Applications to the Numerical Solutions of Boundary Value Problems," Stud. Math. Appl., NorthHolland, Amsterdam, 15 (1983). |
[11] |
M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems, Comput. Optim. Appli., 2 (1992), 93-111.doi: 10.1007/BF00247655. |
[12] |
M. Fukushima, The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem, Math. Program., 72 (1996), 1-15.doi: 10.1007/BF02592328. |
[13] |
D. Gabay, Applications of the method of multipliers to variational inequalities, in "Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems" (eds. M. Fortin and R. Glowinski), North Holland, Amsterdam, The Netherlands, (1983), 299-331.doi: 10.1016/S0168-2024(08)70034-1. |
[14] |
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations, Comput. Math. Appli., 2 (1976), 17-40.doi: 10.1016/0898-1221(76)90003-1. |
[15] |
R. Glowinski, "Numerical Methods for Nonlinear Variational Problems," Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. |
[16] |
R. Glowinski and A. Marrocco, Approximation par éléments finis d'ordreun et résolution par pénalisation-dualité d'une classe de problèmes non linéaires, R.A.I.R.O., R2 (1975), 41-76. |
[17] |
R. Glowinski and P. Le Tallec, "Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics," SIAM Studies in Applied Mathematics, Philadelphia, PA, 1989.doi: 10.1137/1.9781611970838. |
[18] |
R. Glowinski, T. Kärkkäinen and K. Majava, On the convergence of operator-splitting methods, in "Numerical Methods for Scienfic computing, Variational Problems and Applications" (eds. Y. Kuznetsov, P. Neittanmaki and O. Pironneau), Barcelona, 2003. |
[19] |
B. S. He, L. Z. Liao, D. R. Han and H. Yang, A new inexact alternating directions method for monontone variational inequalities, Math. Program., 92 (2002), 103-118.doi: 10.1007/s101070100280. |
[20] |
B. S. He, M. Tao, M. H. Xu and X. M. Yuan, Alternating directions based contraction method for generally separable linearly constrained convex programming problems, Optimization, to appear. |
[21] |
B. S. He, M. Tao and X. M. Yuan, A splitting method for separable convex programming, IMA J. Num. Anal., in revision. |
[22] |
B. S. He, M. Tao and X. M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM J. Optim., 12 (2012), 313-340. |
[23] |
B. S. He, M. H. Xu and X. M. Yuan, Solving large-scale least squares covariance matrix problems by alternating direction methods, SIAM J. Matrix Anal. Appli., 32 (2011), 136-152. |
[24] |
B. S. He and X. M. Yuan, On the O(1/n) convergence rate of Douglas-Rachford alternating direction method, SIAM J. Num. Anal., 50 (2012), 700-709.doi: 10.1137/110836936. |
[25] |
M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appli., 4 (1969), 303-320. |
[26] |
P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Num. Anal., 16 (1979), 964-979. |
[27] |
B. Martinet, Regularization d'inequations variationelles par approximations sucessives, Revue Francaise d'Informatique et de Recherche Opérationelle, 4 (1970), 154-158. |
[28] |
M. K. Ng, P. A. Weiss and X. M. Yuan, Solving constrained total-variation problems via alternating direction methods, SIAM J. Sci. Comput., 32 (2010), 2710-2736.doi: 10.1137/090774823. |
[29] |
G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Analy. Appli., 72 (1979), 383-390.doi: 10.1016/0022-247X(79)90234-8. |
[30] |
M. J. D. Powell, A method for nonlinear constraints in minimization problems, in "Optimization" (eds. R. Fletcher), Academic Press, New York, (1969), 283-298. |
[31] | |
[32] |
A. Ruszczyński, Parallel decomposition of multistage stochastic programming problems, Math. Program., 58 (1993), 201-228. |
[33] |
S. Setzer, G. Steidl and T. Tebuber, Deblurring Poissonian images by split Bregman techniques, J. Visual Commun. Image Repres., 21 (2010), 193-199.doi: 10.1016/j.jvcir.2009.10.006. |
[34] |
J. Sun and S. Zhang, A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs, European J. Oper. Res., 207 (2010), 1210-1220.doi: 10.1016/j.ejor.2010.07.020. |
[35] |
M. Tao and X. M. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., 21 (2011), 57-81.doi: 10.1137/100781894. |
[36] |
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu and K. Knight, Sparsity and smoothness via the fused lasso, J. Royal Statist. Soc., 67 (2005), 91-108.doi: 10.1111/j.1467-9868.2005.00490.x. |
[37] |
Z. Wen, D. Goldfarb and W. Yin, Alternating direction augmented Lagrangian methods for semideffinite programming, Math. Program. Comput., 2 (2010), 203-230.doi: 10.1007/s12532-010-0017-1. |
[38] |
X. M. Yuan, Alternating direction methods for covariance selection models, J. Sci. Comput., 51 (2012), 261-273.doi: 10.1007/s10915-011-9507-1. |
[39] |
S. Zhang, J. Ang and J. Sun, An alternating direction method for solving convex nonlinear semidefinite programming problem, Optimization, to appear. |
[40] |
X. Q. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imag. Sci., 3 (2010), 253-276.doi: 10.1137/090746379. |
[41] |
X. Q. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration, J. Sci. Comput., 46 (2010), 20-46.doi: 10.1007/s10915-010-9408-8. |