2013, 3(1): 49-62. doi: 10.3934/naco.2013.3.49

Characterization of damped linear dynamical systems in free motion

1. 

Department of Mathematics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

2. 

Department of Mechanical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, United States

3. 

Department of Mechanical Engineering, University of California, Berkeley, CA 94720, United States

Received  October 2011 Revised  November 2012 Published  January 2013

It is well known that the free motion of a single-degree-of-freedom damped linear dynamical system can be characterized as overdamped, underdamped, or critically damped. Using the methodology of phase synchronization, which transforms any system of linear second-order differential equations into independent second-order equations, this characterization of free motion is generalized to multi-degree-of-freedom damped linear systems. A real scalar function, termed the viscous damping function, is introduced as an extension of the classical damping ratio. It is demonstrated that the free motion of a multi-degree-of-freedom system is characterized by its viscous damping function, and sometimes the characterization may be conducted with ease by examining the extrema of the viscous damping function.
Citation: Matthias Morzfeld, Daniel T. Kawano, Fai Ma. Characterization of damped linear dynamical systems in free motion. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 49-62. doi: 10.3934/naco.2013.3.49
References:
[1]

L. Barkwell and P. Lancaster, Overdamped and gyroscopic vibrating systems, ASME Journal of Applied Mechanics, 59 (1992), 176-181. doi: 10.1115/1.2899425.

[2]

A. Bhaskar, Criticality of damping in multi-degree-of-freedom systems, ASME Journal of Applied Mechanics, 64 (1997), 387-393. doi: 10.1115/1.2787320.

[3]

R. M. Bulatović, Non-oscillatory damped multi-degree-of-freedom systems, Acta Mechanica, 151 (2001), 235-244. doi: 10.1007/BF01246920.

[4]

R. M. Bulatović, On the heavily damped response in viscously damped dynamic systems, ASME Journal of Applied Mechanics, 71 (2004), 131-134. doi: 10.1115/1.1629108.

[5]

T. K. Caughey and M. E. J. Okelly, Classical normal modes in damped linear dynamic systems, ASME Journal of Applied Mechanics, 32 (1965), 583-588. doi: 10.1115/1.3627262.

[6]

R. M. Chalasani, Ride performance potential of active suspension systems - part I: simplified analysis based on a quarter-car model, in "ASME Symposium on Simulation and Control of Ground Vehicles and Transportation Systems," AMD-Vol. 80, DSC-Vol. 2, ASME, (1986), 187-204.

[7]

G. M. Connell, Asymptotic stability of second-order linear systems with semi-definite damping, AIAA Journal, 7 (1969), 1185-1187. doi: 10.2514/3.5307.

[8]

J. W. Demmel, "Applied Numerical Linear Algebra," Society for Industrial and Applied Mathematics, Philadelphia, 1997. doi: 10.1137/1.9781611971446.

[9]

R. J. Duffin, A minimax theory for overdamped networks, Journal of Rational Mechanics and Analysis, 4 (1955), 221-233.

[10]

R. Fletscher, "Practical Methods of Optimization," 2nd edition, Wiley, Hoboken, New Jersey, 2000.

[11]

I. Gohberg, P. Lancaster and L. Rodman, "Matrix Polynomials," Academic Press, New York, 1982.

[12]

A. J. Gray and A. N. Andry, A simple calculation of the critical damping matrix of a linear multi-degree-of-freedom system, Mechanics Research Communications, 9 (1982), 379-380. doi: [10.1016/0093-6413(82)90035-0.

[13]

P. Hagedorn and S. Otterbein, "Technische Schwingungslehre," Springer, Berlin, Germany, 1987. doi: 10.1007/978-3-642-83164-5.

[14]

K. Huseyin, "Vibrations and Stability of Multiple Parameter Systems," Noordhoff, Leiden, 1978.

[15]

D. J. Inman and A. N. Andry, Jr., Some results on the nature of eigenvalues of discrete damped linear systems, ASME Journal of Applied Mechanics, 47 (1980), 927-930. doi: 10.1115/1.3153815.

[16]

D. J. Inman, "Vibration with Control," Wiley, Hoboken, New Jersey, 2006.

[17]

D. T. Kawano, M. Morzfeld and F. Ma, The decoupling of defective linear dynamical systems in free motion, Journal of Sound and Vibration, 330 (2011), 5165-5183. doi: 10.1016/j.jsv.2011.05.013.

[18]

P. Lancaster, "Lambda-Matrices and Vibrating Systems," Pergamon Press, Oxford, United Kingdom, 1966.

[19]

P. Lancaster and M. Tismenetsky, "The Theory of Matrices," 2nd edition, Academic Press, New York, 1985.

[20]

F. Ma, A. Imam and M. Morzfeld, The decoupling of damped linear systems in oscillatory free vibration, Journal of Sound and Vibration, 324 (2009), 408-428. doi: 10.1016/j.jsv.2009.02.005.

[21]

F. Ma, M. Morzfeld and A. Imam, The decoupling of damped linear systems in free or forced vibration, Journal of Sound and Vibration, 329 (2010), 3182-3202. doi: 10.1016/j.jsv.2010.02.017.

[22]

L. Meirovitch, "Methods of Analytical Dynamics," McGraw-Hill, New York, 1970.

[23]

M. Morzfeld, F. Ma and B. N. Parlett, The transformation of second-order linear systems into independent equations, SIAM Journal on Applied Mathematics, 71 (2011), 1026-1043. doi: 10.1137/100818637.

[24]

P. C. Müller, Oscillatory damped linear systems, Mechanics Research Communications, 6 (1979), 81-86.

[25]

D. W. Nicholson, Eigenvalue bounds for damped linear systems, Mechanics Research Communications, 5 (1978), 147-152.

[26]

D. W. Nicholson, Eigenvalue bounds for linear mechanical systems with nonmodal damping, Mechanics Research Communications, 14 (1978), 115-122.

[27]

D. W. Nicholson, Overdamping of a linear mechanical system, Mechanics Research Communications, 10 (1983), 67-76.

[28]

J. Nocedal and S. T. Wright, "Numerical Optimization," 2nd edition, Springer, New York, 2006.

[29]

J. W. Strutt (Lord Rayleigh), "The Theory of Sound, Vol. I," Dover, New York, 1945 (reprint of the 1894 edition).

[30]

F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43 (2001), 235-286.

[31]

S. Türkay and H. Akçay, A study of random vibration characteristics of a quarter car model, Journal of Sound and Vibration, 282 (2005), 111-124.

show all references

References:
[1]

L. Barkwell and P. Lancaster, Overdamped and gyroscopic vibrating systems, ASME Journal of Applied Mechanics, 59 (1992), 176-181. doi: 10.1115/1.2899425.

[2]

A. Bhaskar, Criticality of damping in multi-degree-of-freedom systems, ASME Journal of Applied Mechanics, 64 (1997), 387-393. doi: 10.1115/1.2787320.

[3]

R. M. Bulatović, Non-oscillatory damped multi-degree-of-freedom systems, Acta Mechanica, 151 (2001), 235-244. doi: 10.1007/BF01246920.

[4]

R. M. Bulatović, On the heavily damped response in viscously damped dynamic systems, ASME Journal of Applied Mechanics, 71 (2004), 131-134. doi: 10.1115/1.1629108.

[5]

T. K. Caughey and M. E. J. Okelly, Classical normal modes in damped linear dynamic systems, ASME Journal of Applied Mechanics, 32 (1965), 583-588. doi: 10.1115/1.3627262.

[6]

R. M. Chalasani, Ride performance potential of active suspension systems - part I: simplified analysis based on a quarter-car model, in "ASME Symposium on Simulation and Control of Ground Vehicles and Transportation Systems," AMD-Vol. 80, DSC-Vol. 2, ASME, (1986), 187-204.

[7]

G. M. Connell, Asymptotic stability of second-order linear systems with semi-definite damping, AIAA Journal, 7 (1969), 1185-1187. doi: 10.2514/3.5307.

[8]

J. W. Demmel, "Applied Numerical Linear Algebra," Society for Industrial and Applied Mathematics, Philadelphia, 1997. doi: 10.1137/1.9781611971446.

[9]

R. J. Duffin, A minimax theory for overdamped networks, Journal of Rational Mechanics and Analysis, 4 (1955), 221-233.

[10]

R. Fletscher, "Practical Methods of Optimization," 2nd edition, Wiley, Hoboken, New Jersey, 2000.

[11]

I. Gohberg, P. Lancaster and L. Rodman, "Matrix Polynomials," Academic Press, New York, 1982.

[12]

A. J. Gray and A. N. Andry, A simple calculation of the critical damping matrix of a linear multi-degree-of-freedom system, Mechanics Research Communications, 9 (1982), 379-380. doi: [10.1016/0093-6413(82)90035-0.

[13]

P. Hagedorn and S. Otterbein, "Technische Schwingungslehre," Springer, Berlin, Germany, 1987. doi: 10.1007/978-3-642-83164-5.

[14]

K. Huseyin, "Vibrations and Stability of Multiple Parameter Systems," Noordhoff, Leiden, 1978.

[15]

D. J. Inman and A. N. Andry, Jr., Some results on the nature of eigenvalues of discrete damped linear systems, ASME Journal of Applied Mechanics, 47 (1980), 927-930. doi: 10.1115/1.3153815.

[16]

D. J. Inman, "Vibration with Control," Wiley, Hoboken, New Jersey, 2006.

[17]

D. T. Kawano, M. Morzfeld and F. Ma, The decoupling of defective linear dynamical systems in free motion, Journal of Sound and Vibration, 330 (2011), 5165-5183. doi: 10.1016/j.jsv.2011.05.013.

[18]

P. Lancaster, "Lambda-Matrices and Vibrating Systems," Pergamon Press, Oxford, United Kingdom, 1966.

[19]

P. Lancaster and M. Tismenetsky, "The Theory of Matrices," 2nd edition, Academic Press, New York, 1985.

[20]

F. Ma, A. Imam and M. Morzfeld, The decoupling of damped linear systems in oscillatory free vibration, Journal of Sound and Vibration, 324 (2009), 408-428. doi: 10.1016/j.jsv.2009.02.005.

[21]

F. Ma, M. Morzfeld and A. Imam, The decoupling of damped linear systems in free or forced vibration, Journal of Sound and Vibration, 329 (2010), 3182-3202. doi: 10.1016/j.jsv.2010.02.017.

[22]

L. Meirovitch, "Methods of Analytical Dynamics," McGraw-Hill, New York, 1970.

[23]

M. Morzfeld, F. Ma and B. N. Parlett, The transformation of second-order linear systems into independent equations, SIAM Journal on Applied Mathematics, 71 (2011), 1026-1043. doi: 10.1137/100818637.

[24]

P. C. Müller, Oscillatory damped linear systems, Mechanics Research Communications, 6 (1979), 81-86.

[25]

D. W. Nicholson, Eigenvalue bounds for damped linear systems, Mechanics Research Communications, 5 (1978), 147-152.

[26]

D. W. Nicholson, Eigenvalue bounds for linear mechanical systems with nonmodal damping, Mechanics Research Communications, 14 (1978), 115-122.

[27]

D. W. Nicholson, Overdamping of a linear mechanical system, Mechanics Research Communications, 10 (1983), 67-76.

[28]

J. Nocedal and S. T. Wright, "Numerical Optimization," 2nd edition, Springer, New York, 2006.

[29]

J. W. Strutt (Lord Rayleigh), "The Theory of Sound, Vol. I," Dover, New York, 1945 (reprint of the 1894 edition).

[30]

F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43 (2001), 235-286.

[31]

S. Türkay and H. Akçay, A study of random vibration characteristics of a quarter car model, Journal of Sound and Vibration, 282 (2005), 111-124.

[1]

Willy Sarlet, Tom Mestdag. Compatibility aspects of the method of phase synchronization for decoupling linear second-order differential equations. Journal of Geometric Mechanics, 2022, 14 (1) : 91-104. doi: 10.3934/jgm.2021019

[2]

David L. Russell. Control via decoupling of a class of second order linear hybrid systems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1321-1334. doi: 10.3934/dcdss.2014.7.1321

[3]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[4]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[5]

Chih-Wen Shih, Jui-Pin Tseng. From approximate synchronization to identical synchronization in coupled systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3677-3714. doi: 10.3934/dcdsb.2020086

[6]

Alexander Pimenov, Dmitrii I. Rachinskii. Linear stability analysis of systems with Preisach memory. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 997-1018. doi: 10.3934/dcdsb.2009.11.997

[7]

Ken Shirakawa. Stability analysis for phase field systems associated with crystalline-type energies. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 483-504. doi: 10.3934/dcdss.2011.4.483

[8]

Eduard Feireisl, Antonín Novotný. Two phase flows of compressible viscous fluids. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2215-2232. doi: 10.3934/dcdss.2022091

[9]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[10]

William F. Thompson, Rachel Kuske, Yue-Xian Li. Stochastic phase dynamics of noise driven synchronization of two conditional coherent oscillators. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2971-2995. doi: 10.3934/dcds.2012.32.2971

[11]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[12]

Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115

[13]

Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787

[14]

Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012

[15]

Samuel Bowong, Jean Luc Dimi. Adaptive synchronization of a class of uncertain chaotic systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 235-248. doi: 10.3934/dcdsb.2008.9.235

[16]

V. Afraimovich, J.-R. Chazottes, A. Cordonet. Synchronization in directionally coupled systems: Some rigorous results. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 421-442. doi: 10.3934/dcdsb.2001.1.421

[17]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1029-1054. doi: 10.3934/dcdsb.2021079

[18]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[19]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial and Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[20]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021, 8 (2) : 153-163. doi: 10.3934/jcd.2021007

 Impact Factor: 

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]