-
Previous Article
A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces
- NACO Home
- This Issue
-
Next Article
Approximation of reachable sets using optimal control algorithms
Another note on some quadrature based three-step iterative methods for non-linear equations
1. | Stord Haugesund University College, Department of Engineering, Haugesund, Norway |
References:
[1] |
ARPREC, C++/Fortran-90 arbitrary precision package,, Available at: \url{http://crd-legacy.lbl.gov/~dhbailey/mpdist/}., ().
|
[2] |
H. Ding, Y. Zhang, S. Wang and X. Yang, A note on some quadrature based three-step iterative methods for non-linear equations, Appl. Math. Comput., 215 (2009), 53-57.
doi: 10.1016/j.amc.2009.04.036. |
[3] |
N. A. Mir and T. Zaman, Some quadrature based three-step iterative methods for non-linear equations, Appl. Math. Comput., 193 (2007), 366-373.
doi: 10.1016/j.amc.2007.03.071. |
show all references
References:
[1] |
ARPREC, C++/Fortran-90 arbitrary precision package,, Available at: \url{http://crd-legacy.lbl.gov/~dhbailey/mpdist/}., ().
|
[2] |
H. Ding, Y. Zhang, S. Wang and X. Yang, A note on some quadrature based three-step iterative methods for non-linear equations, Appl. Math. Comput., 215 (2009), 53-57.
doi: 10.1016/j.amc.2009.04.036. |
[3] |
N. A. Mir and T. Zaman, Some quadrature based three-step iterative methods for non-linear equations, Appl. Math. Comput., 193 (2007), 366-373.
doi: 10.1016/j.amc.2007.03.071. |
[1] |
P. Álvarez-Caudevilla, J. D. Evans, V. A. Galaktionov. The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 807-827. doi: 10.3934/dcds.2015.35.807 |
[2] |
Zoltan Satmari. Iterative Bernstein splines technique applied to fractional order differential equations. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021039 |
[3] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems and Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[4] |
Sihong Shao, Huazhong Tang. Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 623-640. doi: 10.3934/dcdsb.2006.6.623 |
[5] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
[6] |
Michał Jóźwikowski, Mikołaj Rotkiewicz. Bundle-theoretic methods for higher-order variational calculus. Journal of Geometric Mechanics, 2014, 6 (1) : 99-120. doi: 10.3934/jgm.2014.6.99 |
[7] |
Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817 |
[8] |
Qingguang Guan. Some estimates of virtual element methods for fourth order problems. Electronic Research Archive, 2021, 29 (6) : 4099-4118. doi: 10.3934/era.2021074 |
[9] |
Antonio Marigonda. Second order conditions for the controllability of nonlinear systems with drift. Communications on Pure and Applied Analysis, 2006, 5 (4) : 861-885. doi: 10.3934/cpaa.2006.5.861 |
[10] |
Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935 |
[11] |
Dariusz Bugajewski, Piotr Kasprzak. On mappings of higher order and their applications to nonlinear equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 627-647. doi: 10.3934/cpaa.2012.11.627 |
[12] |
Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851 |
[13] |
Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184 |
[14] |
Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure and Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617 |
[15] |
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1 |
[16] |
Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183 |
[17] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[18] |
Toshiko Ogiwara, Hiroshi Matano. Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 1-34. doi: 10.3934/dcds.1999.5.1 |
[19] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial and Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[20] |
Simeon Reich, Alexander J. Zaslavski. Convergence of generic infinite products of homogeneous order-preserving mappings. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 929-945. doi: 10.3934/dcds.1999.5.929 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]