\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors

Abstract Related Papers Cited by
  • Let $n$ be a positive integer and $m$ be a positive even integer. Let ${\mathcal A}$ be an $m^{th}$ order $n$-dimensional real weakly symmetric tensor and ${\mathcal B}$ be a real weakly symmetric positive definite tensor of the same size. $\lambda \in \mathbb{R}$ is called a ${\mathcal B}_r$-eigenvalue of ${\mathcal A}$ if ${\mathcal A} x^{m-1} = \lambda {\mathcal B} x^{m-1}$ for some $x \in \mathbb{R}^n \backslash \{0\}$. In this paper, we introduce two unconstrained optimization problems and obtain some variational characterizations for the minimum and maximum ${\mathcal B}_r$--eigenvalues of ${\mathcal A}$. Our results extend Auchmuty's unconstrained variational principles for eigenvalues of real symmetric matrices. This unconstrained optimization approach can be used to find a Z-, H-, or D-eigenvalue of an even order weakly symmetric tensor. We provide some numerical results to illustrate the effectiveness of this approach for finding a Z-eigenvalue and for determining the positive semidefiniteness of an even order symmetric tensor.
    Mathematics Subject Classification: Primary: 65F15, 65K05; Secondary: 15A69.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Auchmuty, Unconstrained variational principles for eigenvalues of real symmetric matrices, SIAM J. Math. Anal., 20 (1989), 1186-1207.doi: 10.1137/0520078.

    [2]

    G. Auchmuty, Globally and rapidly convergent algorithms for symmetric eigenproblems, SIAM J. Matrix Anal. Appl., 12 (1991), 690-706.doi: 10.1137/0612053.

    [3]

    B. W. Bader, T. G. Kolda and others, "MATLAB Tensor Toolbox Version 2.5," 2012. Available from: http://www.sandia.gov/~tgkolda/TensorToolbox/.

    [4]

    D. Cartwright and B. Sturmfels, The number of eigenvalues of a tensor, Linear Algebra Appl., 438 (2013), 942-952.doi: 10.1016/j.laa.2011.05.040.

    [5]

    K. C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520.

    [6]

    K. C. Chang, K. Pearson and T. Zhang, On eigenvalues of real symmetric tensors, J. Math. Anal. Appl., 350 (2009), 416-422.doi: 10.1016/j.jmaa.2008.09.067.

    [7]

    Y. Dai and C. Hao, A subspace projection method for finding the extreme Z-eigenvalues of supersymmetric positive definite tensor, A talk given at the International Conference on the Spectral Theory of Tensors, Nankai University, 2012.

    [8]

    S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438 (2013), 738-749.doi: 10.1016/j.laa.2011.02.042.

    [9]

    D. Henrion, J.-B. Lasserre and J. Löfberg, GloptiPoly3: moments, optimization and semidefinite programming, Optim. Methods Softw., 24 (2009), 761-779.doi: 10.1080/10556780802699201.

    [10]

    E. Kofidis and Ph. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.doi: 10.1137/S0895479801387413.

    [11]

    T.. Kolda and J.. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.doi: 10.1137/100801482.

    [12]

    G. Li, L. Qi and G. Yu, "The Z-eigenvalues of a Aymmetric Tensor and Its Application to Spectral Hypergraph Theory," Department of Applied Mathematics, University of New South Wales, December 2011.

    [13]

    L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in "Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP'05)," 1 (2005), 129-132.

    [14]

    The Mathworks, Matlab 7.8.0, 2009.

    [15]

    J. Nocedal and S. Wright, "Numerical Optimization," 2nd edition, Springer-Verlag, New York, 2006.

    [16]

    A. L. Peressini, F. E. Sullivan and J. J. Uhl, "The Mathematics of Nonlinear Programming," Springer-Verlag, New York, 1988.

    [17]

    L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.doi: 10.1016/j.jsc.2005.05.007.

    [18]

    L. Qi, W. Sun and Y. Wang, Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526.doi: 10.1007/s11464-007-0031-4.

    [19]

    L. Qi, F. Wang and Y. Wang, Z-eigenvalue methods for a global optimization polynomial optimization problem, Math. Program., 118 (2009), 301-306.doi: 10.1007/s10107-007-0193-6.

    [20]

    L. Qi, Y. Wang and E. X. Wu, D-eigenvalues of diffusion kurtosis tensors, J. Comput. Appl. Math., 221 (2008), 150-157.doi: 10.1016/j.cam.2007.10.012.

    [21]

    L. Qi, G. Yu and E. X. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM J. Imaging Sci., 3 (2010), 416-433.doi: 10.1137/090755138.

    [22]

    L. Qi, G. Yu and Y. Xu, Nonnegative diffusion orientation distribution function, J. Math. Imaging Vision, 45 (2013), 103-113.doi: 10.1007/s10851-012-0346-y.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return