
Previous Article
The TolandFenchelLagrange duality of DC programs for composite convex functions
 NACO Home
 This Issue
 Next Article
On the HermiteHadamard inequality for convex functions of two variables
1.  Department of Mathematics, University of Macau, Macau, China 
References:
[1] 
M. Alomari and M. Darus, Coordinated sconvex function in the first sense with some Hadamardtype inequalities, Int. J. Contemp. Math. Sci., 3 (2008), 15571567. 
[2] 
Y. Ding, Two classes of means and their applications, Math. Pract. Theory, 25 (1995), 1620. (Chinese) 
[3] 
S. S. Dragomir, On the Hadamard's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775788. 
[4] 
S. S. Dragomir and I. Gomm, Some new bounds for two mappings related to the HermiteHadamard inequality for convex functions, Num. Alg. Cont. & Opt., 2 (2012), 271278. doi: 10.3934/naco.2012.2.271. 
[5] 
S. S. Dragomir and C. E .M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. 
[6] 
S. S. Dragomir and S. Wang, An inequality of OstrowskiGrüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers. Math. Applic., 33 (1997), 1520. doi: 10.1016/S08981221(97)000849. 
[7] 
S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105109. doi: 10.1016/S08939659(97)001420. 
[8] 
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008. doi: 10.1137/1.9780898717778. 
[9] 
D. Y. Hwang, K. L. Tseng and G. S. Yang, Some Hadamard's inequalities for coordinated convex functions in a rectangle from the plane, Taiwanese J. Math., 11 (2007), 6373. 
[10] 
M. A. Latif and M. Alomari, On Hadamardtype inequalities for hconvex functions on the coordinates, Int. J. Math. Anal., 3 (2009), 16451656. 
[11] 
M. A. Latif and S. S. Dragomir, On some new inequalities for differentiable coordinated convex functions, J. Inequal. Appl., 1 (2012), 113. doi: 10.1186/1029242X201228. 
[12] 
M. E. Özdemir, E. Set and M. Z. Sarikaya, Some new Hadamard type inequalities for coordinated mconvex and (α, m)convex functions, Hacet. J. Math. Stat., 40 (2011), 219229. 
[13] 
L. Pei, Typical Problems and Methods in Mathematical Analysis, 2nd edition, Higher Education Press, Beijing, 2006. (Chinese) 
[14] 
G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951. 
[15] 
M. Z. Sarikaya, On the HermiteHadamard type inequalities for coordinated convex function via fractional integrals, Integr. Transf. Spec. F., 25 (2014), 134147. doi: 10.1080/10652469.2013.824436. 
[16] 
M. Z. Sarikaya, E. Set, M. E. Özdemir and S. S.Dragomir, New some Hadamard's type inequalities for coordinated convex functions, Tamsui Oxf. J. Inf. Math. Sci., 28 (2012), 137152. 
[17] 
W. Xu and H. Xu, A generalization of convex functions, Journal of Guyuan Teachers College (Natural Science Edition), 24 (2003), 2730. (Chinese) 
show all references
References:
[1] 
M. Alomari and M. Darus, Coordinated sconvex function in the first sense with some Hadamardtype inequalities, Int. J. Contemp. Math. Sci., 3 (2008), 15571567. 
[2] 
Y. Ding, Two classes of means and their applications, Math. Pract. Theory, 25 (1995), 1620. (Chinese) 
[3] 
S. S. Dragomir, On the Hadamard's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775788. 
[4] 
S. S. Dragomir and I. Gomm, Some new bounds for two mappings related to the HermiteHadamard inequality for convex functions, Num. Alg. Cont. & Opt., 2 (2012), 271278. doi: 10.3934/naco.2012.2.271. 
[5] 
S. S. Dragomir and C. E .M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. 
[6] 
S. S. Dragomir and S. Wang, An inequality of OstrowskiGrüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers. Math. Applic., 33 (1997), 1520. doi: 10.1016/S08981221(97)000849. 
[7] 
S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105109. doi: 10.1016/S08939659(97)001420. 
[8] 
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008. doi: 10.1137/1.9780898717778. 
[9] 
D. Y. Hwang, K. L. Tseng and G. S. Yang, Some Hadamard's inequalities for coordinated convex functions in a rectangle from the plane, Taiwanese J. Math., 11 (2007), 6373. 
[10] 
M. A. Latif and M. Alomari, On Hadamardtype inequalities for hconvex functions on the coordinates, Int. J. Math. Anal., 3 (2009), 16451656. 
[11] 
M. A. Latif and S. S. Dragomir, On some new inequalities for differentiable coordinated convex functions, J. Inequal. Appl., 1 (2012), 113. doi: 10.1186/1029242X201228. 
[12] 
M. E. Özdemir, E. Set and M. Z. Sarikaya, Some new Hadamard type inequalities for coordinated mconvex and (α, m)convex functions, Hacet. J. Math. Stat., 40 (2011), 219229. 
[13] 
L. Pei, Typical Problems and Methods in Mathematical Analysis, 2nd edition, Higher Education Press, Beijing, 2006. (Chinese) 
[14] 
G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951. 
[15] 
M. Z. Sarikaya, On the HermiteHadamard type inequalities for coordinated convex function via fractional integrals, Integr. Transf. Spec. F., 25 (2014), 134147. doi: 10.1080/10652469.2013.824436. 
[16] 
M. Z. Sarikaya, E. Set, M. E. Özdemir and S. S.Dragomir, New some Hadamard's type inequalities for coordinated convex functions, Tamsui Oxf. J. Inf. Math. Sci., 28 (2012), 137152. 
[17] 
W. Xu and H. Xu, A generalization of convex functions, Journal of Guyuan Teachers College (Natural Science Edition), 24 (2003), 2730. (Chinese) 
[1] 
S. S. Dragomir, I. Gomm. Some new bounds for two mappings related to the HermiteHadamard inequality for convex functions. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 271278. doi: 10.3934/naco.2012.2.271 
[2] 
Tomasz Szostok. Inequalities of HermiteHadamard type for higher order convex functions, revisited. Communications on Pure and Applied Analysis, 2021, 20 (2) : 903914. doi: 10.3934/cpaa.2020296 
[3] 
Michel C. Delfour. Hadamard Semidifferential, Oriented Distance Function, and some Applications. Communications on Pure and Applied Analysis, 2022, 21 (6) : 19171951. doi: 10.3934/cpaa.2021076 
[4] 
Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved MoserTrudinger inequality involving $L^p$ norm in two dimension. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 963979. doi: 10.3934/dcds.2009.25.963 
[5] 
Li Zhang, Xiaofeng Zhou, Min Chen. The research on the properties of Fourier matrix and bent function. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 571578. doi: 10.3934/naco.2020052 
[6] 
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 169199. doi: 10.3934/dcds.2020296 
[7] 
Qi Wang. Global solutions of a KellerSegel system with saturated logarithmic sensitivity function. Communications on Pure and Applied Analysis, 2015, 14 (2) : 383396. doi: 10.3934/cpaa.2015.14.383 
[8] 
Armin Eftekhari, Michael B. Wakin, Ping Li, Paul G. Constantine. Randomized learning of the secondmoment matrix of a smooth function. Foundations of Data Science, 2019, 1 (3) : 329387. doi: 10.3934/fods.2019015 
[9] 
Yongge Tian. A survey on rank and inertia optimization problems of the matrixvalued function $A + BXB^{*}$. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 289326. doi: 10.3934/naco.2015.5.289 
[10] 
Josef Diblík, Zdeněk Svoboda. Asymptotic properties of delayed matrix exponential functions via Lambert function. Discrete and Continuous Dynamical Systems  B, 2018, 23 (1) : 123144. doi: 10.3934/dcdsb.2018008 
[11] 
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 895910. doi: 10.3934/jimo.2010.6.895 
[12] 
Ruonan Liu, Run Xu. HermiteHadamard type inequalities for harmonical $ (h1,h2) $convex intervalvalued functions. Mathematical Foundations of Computing, 2021, 4 (2) : 89103. doi: 10.3934/mfc.2021005 
[13] 
Sophie Guillaume. Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 2352. doi: 10.3934/dcds.1996.2.23 
[14] 
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a onesided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247257. doi: 10.3934/proc.2013.2013.247 
[15] 
Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355368. doi: 10.3934/mbe.2007.4.355 
[16] 
Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a Dgap function for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 977987. doi: 10.3934/jimo.2014.10.977 
[17] 
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (2) : 485491. doi: 10.3934/jimo.2012.8.485 
[18] 
Lingfeng Li, Shousheng Luo, XueCheng Tai, Jiang Yang. A new variational approach based on levelset function for convex hull problem with outliers. Inverse Problems and Imaging, 2021, 15 (2) : 315338. doi: 10.3934/ipi.2020070 
[19] 
Feng Ma, Jiansheng Shu, Yaxiong Li, Jian Wu. The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex. Journal of Industrial and Management Optimization, 2021, 17 (3) : 11731185. doi: 10.3934/jimo.2020016 
[20] 
Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the BenceMerrimanOsher algorithm for motion by mean curvature. Communications on Pure and Applied Analysis, 2005, 4 (2) : 311339. doi: 10.3934/cpaa.2005.4.311 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]