-
Previous Article
A weighted-path-following method for symmetric cone linear complementarity problems
- NACO Home
- This Issue
-
Next Article
Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration
Existence and convergence results for best proximity points in cone metric spaces
1. | Department of Mathematics, Kyungsung University, Busan 608-736 |
References:
[1] |
M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points,, Nonlinear Analysis, 70 (2009), 3665.
doi: 10.1016/j.na.2008.07.022. |
[2] |
M. A. Al-Thagafi and N. Shahzad, Best proximity sets and equilibrium pairs for a finite family of mulimaps,, Fixed Point Theory Appl., 10 (2008).
|
[3] |
M. A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps,, Nonlinear Analysis, 70 (2009), 1209.
doi: 10.1016/j.na.2008.02.004. |
[4] |
S. S. Basha, Best proximity point theorems: resolution of an important non-linear programming problem,, Optim. Lett., 7 (2013), 1167.
doi: 10.1007/s11590-012-0493-5. |
[5] |
A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points,, J. Math. Anal. Appl., 232 (2006), 1001.
doi: 10.1016/j.jmaa.2005.10.081. |
[6] |
K. Fan, Extensions of two fixed point theorems of F. E. Browder,, Math. Z., 122 (1969), 234.
|
[7] |
M. Gabeleh and A. Abkar, Best proximity points for semi-cyclic contractive pairs in Banach spaces,, Int. Math. Forum, 6 (2011), 2179.
|
[8] |
L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings,, J. Math. Anal. Appl., 332 (2007), 1468.
doi: 10.1016/j.jmaa.2005.03.087. |
[9] |
S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contraction,, Fixed Point Theory Appl., 9 (2009).
|
[10] |
W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies,, Nonlinear Analysis, 68 (2008), 2216.
doi: 10.1016/j.na.2007.01.057. |
[11] |
W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems,, Numer. Func. Anal. Optim., 24 (2003), 851.
doi: 10.1081/NFA-120026380. |
[12] |
B. S. Lee, Cone metirc version of existence and convergence for best proximity points,, Universal J. Appl. Math., 2 (2014), 104. Google Scholar |
[13] |
C. Mongkalkeha and P. Kumam, Some common best proximity points for proximity commuting mappings,, Optim. Lett., 7 (2013), 1825.
doi: 10.1007/s11590-012-0525-1. |
[14] |
D. Turkoglu, M. Abuloha and T. Abdeljawad, KKM mappings in cone metric spaces and some fixed point theorems,, Nonlinear Analysis, 72 (2010), 348.
doi: 10.1016/j.na.2009.06.058. |
[15] |
D. Xu and L. Deng, Cone semi-metric spaces and fixed point theorems for generalized weak contractive mappings,, Nonlinear Analysis Forum, 18 (2013), 57.
|
show all references
References:
[1] |
M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points,, Nonlinear Analysis, 70 (2009), 3665.
doi: 10.1016/j.na.2008.07.022. |
[2] |
M. A. Al-Thagafi and N. Shahzad, Best proximity sets and equilibrium pairs for a finite family of mulimaps,, Fixed Point Theory Appl., 10 (2008).
|
[3] |
M. A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps,, Nonlinear Analysis, 70 (2009), 1209.
doi: 10.1016/j.na.2008.02.004. |
[4] |
S. S. Basha, Best proximity point theorems: resolution of an important non-linear programming problem,, Optim. Lett., 7 (2013), 1167.
doi: 10.1007/s11590-012-0493-5. |
[5] |
A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points,, J. Math. Anal. Appl., 232 (2006), 1001.
doi: 10.1016/j.jmaa.2005.10.081. |
[6] |
K. Fan, Extensions of two fixed point theorems of F. E. Browder,, Math. Z., 122 (1969), 234.
|
[7] |
M. Gabeleh and A. Abkar, Best proximity points for semi-cyclic contractive pairs in Banach spaces,, Int. Math. Forum, 6 (2011), 2179.
|
[8] |
L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings,, J. Math. Anal. Appl., 332 (2007), 1468.
doi: 10.1016/j.jmaa.2005.03.087. |
[9] |
S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contraction,, Fixed Point Theory Appl., 9 (2009).
|
[10] |
W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies,, Nonlinear Analysis, 68 (2008), 2216.
doi: 10.1016/j.na.2007.01.057. |
[11] |
W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems,, Numer. Func. Anal. Optim., 24 (2003), 851.
doi: 10.1081/NFA-120026380. |
[12] |
B. S. Lee, Cone metirc version of existence and convergence for best proximity points,, Universal J. Appl. Math., 2 (2014), 104. Google Scholar |
[13] |
C. Mongkalkeha and P. Kumam, Some common best proximity points for proximity commuting mappings,, Optim. Lett., 7 (2013), 1825.
doi: 10.1007/s11590-012-0525-1. |
[14] |
D. Turkoglu, M. Abuloha and T. Abdeljawad, KKM mappings in cone metric spaces and some fixed point theorems,, Nonlinear Analysis, 72 (2010), 348.
doi: 10.1016/j.na.2009.06.058. |
[15] |
D. Xu and L. Deng, Cone semi-metric spaces and fixed point theorems for generalized weak contractive mappings,, Nonlinear Analysis Forum, 18 (2013), 57.
|
[1] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[2] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[3] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[4] |
Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082 |
[5] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001 |
[6] |
Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007 |
[7] |
Akbar Mahmoodi Rishakani, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad, Nasour Bagheri. Cryptographic properties of cyclic binary matrices. Advances in Mathematics of Communications, 2021, 15 (2) : 311-327. doi: 10.3934/amc.2020068 |
[8] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[9] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[10] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[11] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[12] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
[13] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[14] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[15] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[16] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[17] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001 |
[18] |
Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229 |
[19] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[20] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]