• Previous Article
    A weighted-path-following method for symmetric cone linear complementarity problems
  • NACO Home
  • This Issue
  • Next Article
    Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration
2014, 4(2): 133-140. doi: 10.3934/naco.2014.4.133

Existence and convergence results for best proximity points in cone metric spaces

1. 

Department of Mathematics, Kyungsung University, Busan 608-736

Received  May 2013 Revised  April 2014 Published  May 2014

In this paper, the author introduces generalized cone proximal $\varphi$-cyclic contraction pairs in cone metric spaces and considers the existence and convergence of best proximity point for a pair in cone metric spaces. His results generalize the corresponding results in [1, 4, 5, 7, 8, 12, 13, 15].
Citation: Byung-Soo Lee. Existence and convergence results for best proximity points in cone metric spaces. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 133-140. doi: 10.3934/naco.2014.4.133
References:
[1]

M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points,, Nonlinear Analysis, 70 (2009), 3665.  doi: 10.1016/j.na.2008.07.022.  Google Scholar

[2]

M. A. Al-Thagafi and N. Shahzad, Best proximity sets and equilibrium pairs for a finite family of mulimaps,, Fixed Point Theory Appl., 10 (2008).   Google Scholar

[3]

M. A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps,, Nonlinear Analysis, 70 (2009), 1209.  doi: 10.1016/j.na.2008.02.004.  Google Scholar

[4]

S. S. Basha, Best proximity point theorems: resolution of an important non-linear programming problem,, Optim. Lett., 7 (2013), 1167.  doi: 10.1007/s11590-012-0493-5.  Google Scholar

[5]

A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points,, J. Math. Anal. Appl., 232 (2006), 1001.  doi: 10.1016/j.jmaa.2005.10.081.  Google Scholar

[6]

K. Fan, Extensions of two fixed point theorems of F. E. Browder,, Math. Z., 122 (1969), 234.   Google Scholar

[7]

M. Gabeleh and A. Abkar, Best proximity points for semi-cyclic contractive pairs in Banach spaces,, Int. Math. Forum, 6 (2011), 2179.   Google Scholar

[8]

L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings,, J. Math. Anal. Appl., 332 (2007), 1468.  doi: 10.1016/j.jmaa.2005.03.087.  Google Scholar

[9]

S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contraction,, Fixed Point Theory Appl., 9 (2009).   Google Scholar

[10]

W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies,, Nonlinear Analysis, 68 (2008), 2216.  doi: 10.1016/j.na.2007.01.057.  Google Scholar

[11]

W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems,, Numer. Func. Anal. Optim., 24 (2003), 851.  doi: 10.1081/NFA-120026380.  Google Scholar

[12]

B. S. Lee, Cone metirc version of existence and convergence for best proximity points,, Universal J. Appl. Math., 2 (2014), 104.   Google Scholar

[13]

C. Mongkalkeha and P. Kumam, Some common best proximity points for proximity commuting mappings,, Optim. Lett., 7 (2013), 1825.  doi: 10.1007/s11590-012-0525-1.  Google Scholar

[14]

D. Turkoglu, M. Abuloha and T. Abdeljawad, KKM mappings in cone metric spaces and some fixed point theorems,, Nonlinear Analysis, 72 (2010), 348.  doi: 10.1016/j.na.2009.06.058.  Google Scholar

[15]

D. Xu and L. Deng, Cone semi-metric spaces and fixed point theorems for generalized weak contractive mappings,, Nonlinear Analysis Forum, 18 (2013), 57.   Google Scholar

show all references

References:
[1]

M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points,, Nonlinear Analysis, 70 (2009), 3665.  doi: 10.1016/j.na.2008.07.022.  Google Scholar

[2]

M. A. Al-Thagafi and N. Shahzad, Best proximity sets and equilibrium pairs for a finite family of mulimaps,, Fixed Point Theory Appl., 10 (2008).   Google Scholar

[3]

M. A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps,, Nonlinear Analysis, 70 (2009), 1209.  doi: 10.1016/j.na.2008.02.004.  Google Scholar

[4]

S. S. Basha, Best proximity point theorems: resolution of an important non-linear programming problem,, Optim. Lett., 7 (2013), 1167.  doi: 10.1007/s11590-012-0493-5.  Google Scholar

[5]

A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points,, J. Math. Anal. Appl., 232 (2006), 1001.  doi: 10.1016/j.jmaa.2005.10.081.  Google Scholar

[6]

K. Fan, Extensions of two fixed point theorems of F. E. Browder,, Math. Z., 122 (1969), 234.   Google Scholar

[7]

M. Gabeleh and A. Abkar, Best proximity points for semi-cyclic contractive pairs in Banach spaces,, Int. Math. Forum, 6 (2011), 2179.   Google Scholar

[8]

L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings,, J. Math. Anal. Appl., 332 (2007), 1468.  doi: 10.1016/j.jmaa.2005.03.087.  Google Scholar

[9]

S. Karpagam and S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contraction,, Fixed Point Theory Appl., 9 (2009).   Google Scholar

[10]

W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies,, Nonlinear Analysis, 68 (2008), 2216.  doi: 10.1016/j.na.2007.01.057.  Google Scholar

[11]

W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems,, Numer. Func. Anal. Optim., 24 (2003), 851.  doi: 10.1081/NFA-120026380.  Google Scholar

[12]

B. S. Lee, Cone metirc version of existence and convergence for best proximity points,, Universal J. Appl. Math., 2 (2014), 104.   Google Scholar

[13]

C. Mongkalkeha and P. Kumam, Some common best proximity points for proximity commuting mappings,, Optim. Lett., 7 (2013), 1825.  doi: 10.1007/s11590-012-0525-1.  Google Scholar

[14]

D. Turkoglu, M. Abuloha and T. Abdeljawad, KKM mappings in cone metric spaces and some fixed point theorems,, Nonlinear Analysis, 72 (2010), 348.  doi: 10.1016/j.na.2009.06.058.  Google Scholar

[15]

D. Xu and L. Deng, Cone semi-metric spaces and fixed point theorems for generalized weak contractive mappings,, Nonlinear Analysis Forum, 18 (2013), 57.   Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[3]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[6]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[7]

Akbar Mahmoodi Rishakani, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad, Nasour Bagheri. Cryptographic properties of cyclic binary matrices. Advances in Mathematics of Communications, 2021, 15 (2) : 311-327. doi: 10.3934/amc.2020068

[8]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[9]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[10]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[11]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[12]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[13]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[14]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[15]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[16]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[17]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[18]

Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229

[19]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[20]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

 Impact Factor: 

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]