- Previous Article
- NACO Home
- This Issue
-
Next Article
A weighted-path-following method for symmetric cone linear complementarity problems
Auxiliary signal design for failure detection in differential-algebraic equations
1. | Department of Mathematics, North Carolina State University, Raleigh, North Carolina, 27695-8205, United States, United States |
References:
[1] |
I. Andjelkovic, K. A. Sweetingham and S. L. Campbell, Active fault detection in nonlinear systems using auxiliary signals, in American Control Conference, (2008), 2142-2147. |
[2] |
I. Andjelkovic and S. L. Campbell, Direct optimization determination of auxiliary test signals for linear problems with model uncertainty, in 50th IEEE CDC-ECC, (2011), 909-914. |
[3] |
R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957. |
[4] |
G. Besançon, I. Rubio-Scola and D. Georges, Input selection in observer design for non-uniformly observable systems, in 9th IFAC Symposium on Nonlinear Control Systems, (2013). |
[5] |
K. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, PA, 1996. |
[6] |
A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere, New York, 1975. |
[7] |
S. L. Campbell and R. Nikoukhah, Auxiliary Signal Design for Failure Detection, Princeton University Press, Princeton, New Jersey, 2004. |
[8] |
S. L. Campbell, Least squares completions for nonlinear differential algebraic equations, Numerical Mathematics, 65 (1993), 77-94.
doi: 10.1007/BF01385741. |
[9] |
D. Choe, S. L. Campbell and R. Nikoukhah, A comparison of optimal and suboptimal auxiliary signal design approaches, in IEEE Conference on Control Applications, (2005). |
[10] |
D. Garg, M. A. Patterson, W. W. Hager, A. V. Rao, D. A. Benson and G. T. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica, 46 (2010), 1843-1851.
doi: 10.1016/j.automatica.2010.06.048. |
[11] |
D. Garg, W. W. Hager and A. V. Rao, Pseudospectral methods for solving infinite-horizon optimal control problems, Automatica, 47 (2011), 829-837.
doi: 10.1016/j.automatica.2011.01.085. |
[12] |
D. Garg, M. A. Patterson, C. L. Darby, C. Francolin, G. T. Huntington, W. W. Hager and A. V. Rao, Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems via a radau pseudospectral method, Computational Optimization and Applications, 49 (2011), 335-358.
doi: 10.1007/s10589-009-9291-0. |
[13] |
M. Gerdin, T. Glad and L. Ljung, Parameter estimation in linear differential-algebraic equations, in 13th IFAC Symposium on System Identification, 2003. |
[14] |
M. Gerdts, Parameter identification in higher DAE systems, Technical Report, Department of Mathematics, Universität Hamburg, 2005. |
[15] |
R. Isermann, Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin, Germany, 2006. |
[16] |
R. Kircheis and S. Körkel, Parameter estimation for DAE models in a multiple experiment context, 82nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, 11 (2011), 715-716. |
[17] |
H. H. Niemann, Active fault diagnosis in closed-loop uncertain systems, in 6th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, (2006), 587-592. |
[18] |
H. H. Niemann, A setup for active fault diagnosis, IEEE Transactions on Automatic Control, 51 (2006), 1572-1578.
doi: 10.1109/TAC.2006.878724. |
[19] |
M. A. Patterson and A. V. Rao, Exploiting sparsity in direct collocation pseudospectral methods for solving continuous-time optimal control problems, Journal of Spacecraft and Rockets, 49 (2012), 364-377. |
[20] |
R. J. Patton, P. M. Frank and R. N. Clark, Issues of Fault Diagnosis for Dynamic Systems, Springer, Berlin, Germany, 2000. |
[21] |
N. K. Poulsen and H. H. Niemann, Active fault diagnosis-a stochastic approach, in 7th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, 2009. |
[22] |
I. Okay, S. L. Campbell and P. Kunkel, Completions of implicitly defined time varying vector fields, Linear Algebra and its Applications, 431 (2009), 1422-1438.
doi: 10.1016/j.laa.2009.05.006. |
[23] |
I. Rubio-Scola, G. Besançon and D. Georges, Online observability optimization for state affine systems with output injection and observer design, in 21st IEEE Mediterranean Conference on Control and Automation, 2013. |
[24] |
I. Rubio-Scola, G. Besançon and D. Georges, Input optimization for observability of state affine systems, in 5th IFAC Symposium on System Structure and Control, 2013. |
show all references
References:
[1] |
I. Andjelkovic, K. A. Sweetingham and S. L. Campbell, Active fault detection in nonlinear systems using auxiliary signals, in American Control Conference, (2008), 2142-2147. |
[2] |
I. Andjelkovic and S. L. Campbell, Direct optimization determination of auxiliary test signals for linear problems with model uncertainty, in 50th IEEE CDC-ECC, (2011), 909-914. |
[3] |
R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957. |
[4] |
G. Besançon, I. Rubio-Scola and D. Georges, Input selection in observer design for non-uniformly observable systems, in 9th IFAC Symposium on Nonlinear Control Systems, (2013). |
[5] |
K. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, PA, 1996. |
[6] |
A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere, New York, 1975. |
[7] |
S. L. Campbell and R. Nikoukhah, Auxiliary Signal Design for Failure Detection, Princeton University Press, Princeton, New Jersey, 2004. |
[8] |
S. L. Campbell, Least squares completions for nonlinear differential algebraic equations, Numerical Mathematics, 65 (1993), 77-94.
doi: 10.1007/BF01385741. |
[9] |
D. Choe, S. L. Campbell and R. Nikoukhah, A comparison of optimal and suboptimal auxiliary signal design approaches, in IEEE Conference on Control Applications, (2005). |
[10] |
D. Garg, M. A. Patterson, W. W. Hager, A. V. Rao, D. A. Benson and G. T. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica, 46 (2010), 1843-1851.
doi: 10.1016/j.automatica.2010.06.048. |
[11] |
D. Garg, W. W. Hager and A. V. Rao, Pseudospectral methods for solving infinite-horizon optimal control problems, Automatica, 47 (2011), 829-837.
doi: 10.1016/j.automatica.2011.01.085. |
[12] |
D. Garg, M. A. Patterson, C. L. Darby, C. Francolin, G. T. Huntington, W. W. Hager and A. V. Rao, Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems via a radau pseudospectral method, Computational Optimization and Applications, 49 (2011), 335-358.
doi: 10.1007/s10589-009-9291-0. |
[13] |
M. Gerdin, T. Glad and L. Ljung, Parameter estimation in linear differential-algebraic equations, in 13th IFAC Symposium on System Identification, 2003. |
[14] |
M. Gerdts, Parameter identification in higher DAE systems, Technical Report, Department of Mathematics, Universität Hamburg, 2005. |
[15] |
R. Isermann, Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin, Germany, 2006. |
[16] |
R. Kircheis and S. Körkel, Parameter estimation for DAE models in a multiple experiment context, 82nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, 11 (2011), 715-716. |
[17] |
H. H. Niemann, Active fault diagnosis in closed-loop uncertain systems, in 6th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, (2006), 587-592. |
[18] |
H. H. Niemann, A setup for active fault diagnosis, IEEE Transactions on Automatic Control, 51 (2006), 1572-1578.
doi: 10.1109/TAC.2006.878724. |
[19] |
M. A. Patterson and A. V. Rao, Exploiting sparsity in direct collocation pseudospectral methods for solving continuous-time optimal control problems, Journal of Spacecraft and Rockets, 49 (2012), 364-377. |
[20] |
R. J. Patton, P. M. Frank and R. N. Clark, Issues of Fault Diagnosis for Dynamic Systems, Springer, Berlin, Germany, 2000. |
[21] |
N. K. Poulsen and H. H. Niemann, Active fault diagnosis-a stochastic approach, in 7th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, 2009. |
[22] |
I. Okay, S. L. Campbell and P. Kunkel, Completions of implicitly defined time varying vector fields, Linear Algebra and its Applications, 431 (2009), 1422-1438.
doi: 10.1016/j.laa.2009.05.006. |
[23] |
I. Rubio-Scola, G. Besançon and D. Georges, Online observability optimization for state affine systems with output injection and observer design, in 21st IEEE Mediterranean Conference on Control and Automation, 2013. |
[24] |
I. Rubio-Scola, G. Besançon and D. Georges, Input optimization for observability of state affine systems, in 5th IFAC Symposium on System Structure and Control, 2013. |
[1] |
Martene L. Fair, Stephen L. Campbell. Active incipient fault detection in continuous time systems with multiple simultaneous faults. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 211-224. doi: 10.3934/naco.2011.1.211 |
[2] |
Yingjie Bi, Siyu Liu, Yong Li. Periodic solutions of differential-algebraic equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1383-1395. doi: 10.3934/dcdsb.2019232 |
[3] |
Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differential-algebraic equations. Conference Publications, 2011, 2011 (Special) : 991-1000. doi: 10.3934/proc.2011.2011.991 |
[4] |
Lok Ming Lui, Yalin Wang, Tony F. Chan, Paul M. Thompson. Brain anatomical feature detection by solving partial differential equations on general manifolds. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 605-618. doi: 10.3934/dcdsb.2007.7.605 |
[5] |
David L. Russell. Coefficient identification and fault detection in linear elastic systems; one dimensional problems. Mathematical Control and Related Fields, 2011, 1 (3) : 391-411. doi: 10.3934/mcrf.2011.1.391 |
[6] |
Nana Xu, Jun Sun, Jingjing Liu, Xianchao Xiu. A novel scheme for multivariate statistical fault detection with application to the Tennessee Eastman process. Mathematical Foundations of Computing, 2021, 4 (3) : 167-184. doi: 10.3934/mfc.2021010 |
[7] |
Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467 |
[8] |
Roderick V.N. Melnik, Ningning Song, Per Sandholdt. Dynamics of torque-speed profiles for electric vehicles and nonlinear models based on differential-algebraic equations. Conference Publications, 2003, 2003 (Special) : 610-617. doi: 10.3934/proc.2003.2003.610 |
[9] |
Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1371-1384. doi: 10.3934/dcdss.2019094 |
[10] |
Qi Li, Hong Xue, Changxin Lu. Event-based fault detection for interval type-2 fuzzy systems with measurement outliers. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1301-1328. doi: 10.3934/dcdss.2020412 |
[11] |
Qian Zhang, Huaicheng Yan, Jun Cheng, Xisheng Zhan, Kaibo Shi. Fault detection filtering for continuous-time singular systems under a dynamic event-triggered mechanism. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022023 |
[12] |
Maura B. Paterson, Douglas R. Stinson. Splitting authentication codes with perfect secrecy: New results, constructions and connections with algebraic manipulation detection codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021054 |
[13] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[14] |
Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems and Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229 |
[15] |
Masaru Ikehata, Yavar Kian. The enclosure method for the detection of variable order in fractional diffusion equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022036 |
[16] |
Monika Muszkieta. A variational approach to edge detection. Inverse Problems and Imaging, 2016, 10 (2) : 499-517. doi: 10.3934/ipi.2016009 |
[17] |
Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125 |
[18] |
Elena Beretta, Markus Grasmair, Monika Muszkieta, Otmar Scherzer. A variational algorithm for the detection of line segments. Inverse Problems and Imaging, 2014, 8 (2) : 389-408. doi: 10.3934/ipi.2014.8.389 |
[19] |
Liming Zhang, Tao Qian, Qingye Zeng. Edge detection by using rotational wavelets. Communications on Pure and Applied Analysis, 2007, 6 (3) : 899-915. doi: 10.3934/cpaa.2007.6.899 |
[20] |
Ugo Locatelli, Letizia Stefanelli. Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1155-1187. doi: 10.3934/dcdsb.2015.20.1155 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]