2014, 4(3): 227-239. doi: 10.3934/naco.2014.4.227

Sparse inverse incidence matrices for Schilders' factorization applied to resistor network modeling

1. 

Center for Analysis, Scientific Computing and Applications, Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands, Netherlands, Netherlands

Received  December 2013 Revised  August 2014 Published  September 2014

Schilders' factorization can be used as a basis for preconditioning indefinite linear systems which arise in many problems like least-squares, saddle-point and electronic circuit simulations. Here we consider its application to resistor network modeling. In that case the sparsity of the matrix blocks in Schilders' factorization depends on the sparsity of the inverse of a permuted incidence matrix. We introduce three different possible permutations and determine which permutation leads to the sparsest inverse of the incidence matrix. Permutation techniques are based on types of sub-digraphs of the network of an incidence matrix.
Citation: Sangye Lungten, Wil H. A. Schilders, Joseph M. L. Maubach. Sparse inverse incidence matrices for Schilders' factorization applied to resistor network modeling. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 227-239. doi: 10.3934/naco.2014.4.227
References:
[1]

2nd edition, Springer-Verlag, New York, 2012. doi: 10.1007/978-1-4614-4529-6.  Google Scholar

[2]

Hindustan Book Agency, New Delhi, Springer-Verlag, London and Dordrecht, Heidelberg, New York, 2010. doi: 10.1007/978-1-84882-981-7.  Google Scholar

[3]

3rd edition, Chapman and Hall/CRC Press, Boca Raton, London, 1996.  Google Scholar

[4]

International conference on intelligent computing and cognitive informatics, IEEE 2010. Google Scholar

[5]

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29 (2010), 28-39. Google Scholar

[6]

Journal of Computational and Applied Mathematics, 24 (1988), 89-105. doi: 10.1016/0377-0427(88)90345-7.  Google Scholar

[7]

Linear Algebra and Applications, 431 (2009), 381-395. doi: 10.1016/j.laa.2009.02.036.  Google Scholar

[8]

R. Vandebril, M. V. Barel and N. Mastronardi, Matrix Computations and Semiseparable Matrices,, The Johns Hopkins University Press, ().   Google Scholar

show all references

References:
[1]

2nd edition, Springer-Verlag, New York, 2012. doi: 10.1007/978-1-4614-4529-6.  Google Scholar

[2]

Hindustan Book Agency, New Delhi, Springer-Verlag, London and Dordrecht, Heidelberg, New York, 2010. doi: 10.1007/978-1-84882-981-7.  Google Scholar

[3]

3rd edition, Chapman and Hall/CRC Press, Boca Raton, London, 1996.  Google Scholar

[4]

International conference on intelligent computing and cognitive informatics, IEEE 2010. Google Scholar

[5]

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29 (2010), 28-39. Google Scholar

[6]

Journal of Computational and Applied Mathematics, 24 (1988), 89-105. doi: 10.1016/0377-0427(88)90345-7.  Google Scholar

[7]

Linear Algebra and Applications, 431 (2009), 381-395. doi: 10.1016/j.laa.2009.02.036.  Google Scholar

[8]

R. Vandebril, M. V. Barel and N. Mastronardi, Matrix Computations and Semiseparable Matrices,, The Johns Hopkins University Press, ().   Google Scholar

[1]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[2]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[3]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[4]

Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021087

[5]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[6]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[7]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

[8]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[9]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[10]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[11]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

 Impact Factor: 

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (4)

[Back to Top]