-
Previous Article
Stochastic programming approach for energy management in electric microgrids
- NACO Home
- This Issue
-
Next Article
Two-step methods for image zooming using duality strategies
Sparse inverse incidence matrices for Schilders' factorization applied to resistor network modeling
1. | Center for Analysis, Scientific Computing and Applications, Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands, Netherlands, Netherlands |
References:
[1] |
R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, 2nd edition, Springer-Verlag, New York, 2012.
doi: 10.1007/978-1-4614-4529-6. |
[2] |
R. B. Bapat, Graphs and Matrices, Hindustan Book Agency, New Delhi, Springer-Verlag, London and Dordrecht, Heidelberg, New York, 2010.
doi: 10.1007/978-1-84882-981-7. |
[3] |
G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd edition, Chapman and Hall/CRC Press, Boca Raton, London, 1996. |
[4] |
Z. Lijang, A matrix solution to Hamiltonian path of any graph, International conference on intelligent computing and cognitive informatics, IEEE 2010. |
[5] |
J. Rommes and W. H. A. Schilders, Efficient methods for large resistor networks, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29 (2010), 28-39. |
[6] |
Y. Saad, Preconditioning techniques for nonsymetric and indefinite linear systems, Journal of Computational and Applied Mathematics, 24 (1988), 89-105.
doi: 10.1016/0377-0427(88)90345-7. |
[7] |
W. H. A. Schilders, Solution of indefinite linear systems using an LQ decomosition for the linear constraints, Linear Algebra and Applications, 431 (2009), 381-395.
doi: 10.1016/j.laa.2009.02.036. |
[8] |
R. Vandebril, M. V. Barel and N. Mastronardi, Matrix Computations and Semiseparable Matrices, The Johns Hopkins University Press, Baltimore, Marylan |
show all references
References:
[1] |
R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, 2nd edition, Springer-Verlag, New York, 2012.
doi: 10.1007/978-1-4614-4529-6. |
[2] |
R. B. Bapat, Graphs and Matrices, Hindustan Book Agency, New Delhi, Springer-Verlag, London and Dordrecht, Heidelberg, New York, 2010.
doi: 10.1007/978-1-84882-981-7. |
[3] |
G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd edition, Chapman and Hall/CRC Press, Boca Raton, London, 1996. |
[4] |
Z. Lijang, A matrix solution to Hamiltonian path of any graph, International conference on intelligent computing and cognitive informatics, IEEE 2010. |
[5] |
J. Rommes and W. H. A. Schilders, Efficient methods for large resistor networks, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29 (2010), 28-39. |
[6] |
Y. Saad, Preconditioning techniques for nonsymetric and indefinite linear systems, Journal of Computational and Applied Mathematics, 24 (1988), 89-105.
doi: 10.1016/0377-0427(88)90345-7. |
[7] |
W. H. A. Schilders, Solution of indefinite linear systems using an LQ decomosition for the linear constraints, Linear Algebra and Applications, 431 (2009), 381-395.
doi: 10.1016/j.laa.2009.02.036. |
[8] |
R. Vandebril, M. V. Barel and N. Mastronardi, Matrix Computations and Semiseparable Matrices, The Johns Hopkins University Press, Baltimore, Marylan |
[1] |
Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems and Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025 |
[2] |
Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems and Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601 |
[3] |
Daniel Genin. Research announcement: Boundedness of orbits for trapezoidal outer billiards. Electronic Research Announcements, 2008, 15: 71-78. doi: 10.3934/era.2008.15.71 |
[4] |
Percy Fernández-Sánchez, Jorge Mozo-Fernández, Hernán Neciosup. Dicritical nilpotent holomorphic foliations. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3223-3237. doi: 10.3934/dcds.2018140 |
[5] |
Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121 |
[6] |
Doston Jumaniyozov, Ivan Kaygorodov, Abror Khudoyberdiyev. The algebraic classification of nilpotent commutative algebras. Electronic Research Archive, 2021, 29 (6) : 3909-3993. doi: 10.3934/era.2021068 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems and Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123 |
[9] |
Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016 |
[10] |
Yao Lu, Rui Zhang, Dongdai Lin. Improved bounds for the implicit factorization problem. Advances in Mathematics of Communications, 2013, 7 (3) : 243-251. doi: 10.3934/amc.2013.7.243 |
[11] |
Jiu-Gang Dong, Seung-Yeal Ha, Doheon Kim. Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5569-5596. doi: 10.3934/dcdsb.2019072 |
[12] |
Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497 |
[13] |
Mark Pollicott. Ergodicity of stable manifolds for nilpotent extensions of Anosov flows. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 599-604. doi: 10.3934/dcds.2002.8.599 |
[14] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4667-4704. doi: 10.3934/dcds.2021053 |
[15] |
Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems and Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123 |
[16] |
Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263 |
[17] |
Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563 |
[18] |
Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 |
[19] |
Ariel Salort. Lower bounds for Orlicz eigenvalues. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1415-1434. doi: 10.3934/dcds.2021158 |
[20] |
P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]