- Previous Article
- NACO Home
- This Issue
-
Next Article
Minimax problems for set-valued mappings with set optimization
Essential issues on solving optimal power flow problems using soft-computing
1. | Department of Electrical and Computer Engineering, Curtin University, Perth, Australia, Australia |
2. | Business School, Central South University, Changsha, China |
3. | Department of Mathematics and Statistics, Curtin University, Perth, Australia |
References:
[1] |
A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas and V. Petridis, Optimal power flow by enhanced genetic algorithm, IEEE Transactions on Power Systems, 17 (2002), 229-236. |
[2] |
K. T. Chatuervedi, Manjaree Pandit and L. Srivastava, Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch, IEEE Transactions on Power Systems, 23 (2008), 1079-1087. |
[3] |
C. L. Chiang, Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels, IEEE Transactions on Power Systems, 24 (2005), 1690-1699. |
[4] |
M. Clerc and J. Kennedy, The particle swarm explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computations, 6 (2002), 58-73. |
[5] |
D. Devaraj and B. Yegnanarayana, Genetic-algorithm-based optimal power flow for security enhancement, IEE Proceedings: Generation, Transmission and Distribution, 152 (2005), 899-905. |
[6] |
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Proceedings 6th International Symposium on Micro Machine and Human Science, IEEE Service Center, Nagoya, 1995, 39-43. |
[7] |
A. A. A. Esmin, G. L. Torres and A. C. Zamhroni, A hybrid particle swarm optimization applied to loss power minimization, IEEE Transactions on Power Systems, 20 (2005), 859-866. |
[8] |
L. K. Kirchmayer, Economic Operation of Power Systems, Wiley, New York, 1958. |
[9] |
K. F. Man, K. S. Tang and S. Kwong, Genetic algorithm: concepts and applications, IEEE Transactions on Industrial Electronics, 43 (1996), 519-534. |
[10] |
K. Meng, H. G. Wang, Z. Y. Dong and K. P. Wong, Quantum inspired particle swarm optimization for valve point economic load dispatch, IEEE Transactions on Power Systems, 25 (2010), 215-222. |
[11] |
N. Mo, Z. Y. Zou, K. W. Chan and G. T. Y. Pong, Transient stability constrained optimal power flow using particle swarm optimization, IET Proceedings Generation, Transmission and Distribution, 1 (2007), 476-483. |
[12] |
S. R. Paranjothi and K. Anburaja, Optimal power flow using refined genetic algorithm, Electric Power Components and Systems, 30 (2002), 1055-1063. |
[13] |
J. Pilgrim, F. Li and R. K. Aggarwal, Genetic algorithms for optimal reactive power compensation on the national grid system, Proceedings of IEEE Power Engineering Society Transmission and Distribution Conference 2000, 524-529. |
[14] |
M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis, 630 (1977), 144-157. |
[15] |
M. J. D. Powell, Algorithms for nonlinear constraints that use lagrangian functions, Mathematical Programming, 14 (1978), 224-248. |
[16] |
M. J. D. Powell, The convergence of variable metric methods for nonlinearly constrained optimization calculations, In Proceedings of Nonlinear Programming 3 (1978), 27-63. |
[17] |
C. R. Reeves, Genetic algorithms and neighbourhood search, Evolutionary Computing: AISB Workshop, 1994, 115-130. |
[18] |
W. Y. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, 2006. |
[19] |
R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template, Proceedings of parallel problem-solving from nature, 2 (1992), 65-74. |
[20] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, New York: Longman Scientific & Technical, 1991. |
[21] |
M. Todorovski and D. Rajicic, An initialization procedure in solving optimal power flow by genetic algorithm, IEEE Transactions on Power Systems, 21 (2006), 480-487. |
[22] |
R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template, Proceedings of Parallel Problem-Solving from Nature, 2 (1992), 65-74. |
[23] |
A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, New York, John Wiley & Sons (2nd edition), 1996. |
[24] |
J. Yuryevich and K. P. Wong, Evolutionary programming based optimal power flow algorithm, IEEE Transactions on Power Systems, 14 (1999), 1245-1250. |
[25] |
C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491.
doi: 10.3934/jimo.2012.8.485. |
[26] |
C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial Management and Optimization, 6 (2010), 895-910.
doi: 10.3934/jimo.2010.6.895. |
show all references
References:
[1] |
A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas and V. Petridis, Optimal power flow by enhanced genetic algorithm, IEEE Transactions on Power Systems, 17 (2002), 229-236. |
[2] |
K. T. Chatuervedi, Manjaree Pandit and L. Srivastava, Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch, IEEE Transactions on Power Systems, 23 (2008), 1079-1087. |
[3] |
C. L. Chiang, Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels, IEEE Transactions on Power Systems, 24 (2005), 1690-1699. |
[4] |
M. Clerc and J. Kennedy, The particle swarm explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computations, 6 (2002), 58-73. |
[5] |
D. Devaraj and B. Yegnanarayana, Genetic-algorithm-based optimal power flow for security enhancement, IEE Proceedings: Generation, Transmission and Distribution, 152 (2005), 899-905. |
[6] |
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Proceedings 6th International Symposium on Micro Machine and Human Science, IEEE Service Center, Nagoya, 1995, 39-43. |
[7] |
A. A. A. Esmin, G. L. Torres and A. C. Zamhroni, A hybrid particle swarm optimization applied to loss power minimization, IEEE Transactions on Power Systems, 20 (2005), 859-866. |
[8] |
L. K. Kirchmayer, Economic Operation of Power Systems, Wiley, New York, 1958. |
[9] |
K. F. Man, K. S. Tang and S. Kwong, Genetic algorithm: concepts and applications, IEEE Transactions on Industrial Electronics, 43 (1996), 519-534. |
[10] |
K. Meng, H. G. Wang, Z. Y. Dong and K. P. Wong, Quantum inspired particle swarm optimization for valve point economic load dispatch, IEEE Transactions on Power Systems, 25 (2010), 215-222. |
[11] |
N. Mo, Z. Y. Zou, K. W. Chan and G. T. Y. Pong, Transient stability constrained optimal power flow using particle swarm optimization, IET Proceedings Generation, Transmission and Distribution, 1 (2007), 476-483. |
[12] |
S. R. Paranjothi and K. Anburaja, Optimal power flow using refined genetic algorithm, Electric Power Components and Systems, 30 (2002), 1055-1063. |
[13] |
J. Pilgrim, F. Li and R. K. Aggarwal, Genetic algorithms for optimal reactive power compensation on the national grid system, Proceedings of IEEE Power Engineering Society Transmission and Distribution Conference 2000, 524-529. |
[14] |
M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis, 630 (1977), 144-157. |
[15] |
M. J. D. Powell, Algorithms for nonlinear constraints that use lagrangian functions, Mathematical Programming, 14 (1978), 224-248. |
[16] |
M. J. D. Powell, The convergence of variable metric methods for nonlinearly constrained optimization calculations, In Proceedings of Nonlinear Programming 3 (1978), 27-63. |
[17] |
C. R. Reeves, Genetic algorithms and neighbourhood search, Evolutionary Computing: AISB Workshop, 1994, 115-130. |
[18] |
W. Y. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, 2006. |
[19] |
R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template, Proceedings of parallel problem-solving from nature, 2 (1992), 65-74. |
[20] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, New York: Longman Scientific & Technical, 1991. |
[21] |
M. Todorovski and D. Rajicic, An initialization procedure in solving optimal power flow by genetic algorithm, IEEE Transactions on Power Systems, 21 (2006), 480-487. |
[22] |
R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, A local search template, Proceedings of Parallel Problem-Solving from Nature, 2 (1992), 65-74. |
[23] |
A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, New York, John Wiley & Sons (2nd edition), 1996. |
[24] |
J. Yuryevich and K. P. Wong, Evolutionary programming based optimal power flow algorithm, IEEE Transactions on Power Systems, 14 (1999), 1245-1250. |
[25] |
C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491.
doi: 10.3934/jimo.2012.8.485. |
[26] |
C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial Management and Optimization, 6 (2010), 895-910.
doi: 10.3934/jimo.2010.6.895. |
[1] |
Pooja. A novel differential evolution algorithm for economic power dispatch problem. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021042 |
[2] |
Mohamed A. Tawhid, Kevin B. Dsouza. Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems. Mathematical Foundations of Computing, 2018, 1 (2) : 181-200. doi: 10.3934/mfc.2018009 |
[3] |
Md. Abul Kalam Azad, Edite M.G.P. Fernandes. A modified differential evolution based solution technique for economic dispatch problems. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1017-1038. doi: 10.3934/jimo.2012.8.1017 |
[4] |
Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092 |
[5] |
Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038 |
[6] |
Arezu Zare, Mohammad Keyanpour, Maziar Salahi. On fractional quadratic optimization problem with two quadratic constraints. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 301-315. doi: 10.3934/naco.2020003 |
[7] |
Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066 |
[8] |
Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks and Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631 |
[9] |
Qifeng Cheng, Xue Han, Tingting Zhao, V S Sarma Yadavalli. Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter. Journal of Industrial and Management Optimization, 2019, 15 (1) : 177-198. doi: 10.3934/jimo.2018038 |
[10] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial and Management Optimization, 2022, 18 (2) : 897-932. doi: 10.3934/jimo.2021002 |
[11] |
Mostafa Abouei Ardakan, A. Kourank Beheshti, S. Hamid Mirmohammadi, Hamed Davari Ardakani. A hybrid meta-heuristic algorithm to minimize the number of tardy jobs in a dynamic two-machine flow shop problem. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 465-480. doi: 10.3934/naco.2017029 |
[12] |
Tao Zhang, Yue-Jie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture. Journal of Industrial and Management Optimization, 2011, 7 (1) : 31-51. doi: 10.3934/jimo.2011.7.31 |
[13] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1651-1663. doi: 10.3934/jimo.2021037 |
[14] |
Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097 |
[15] |
Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267 |
[16] |
Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095 |
[17] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 321-337. doi: 10.3934/naco.2021008 |
[18] |
K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026 |
[19] |
Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani. Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 633-644. doi: 10.3934/naco.2021001 |
[20] |
Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]