-
Previous Article
Adjacent vertex distinguishing edge-colorings and total-colorings of the Cartesian product of graphs
- NACO Home
- This Issue
-
Next Article
Partial $S$-goodness for partially sparse signal recovery
Some useful inequalities via trace function method in Euclidean Jordan algebras
1. | Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan |
References:
[1] |
A. Auslender, Penalty and barrier methods: a unified framework, SIAM Journal on Optimization, 10 (1999), 211-230.
doi: 10.1137/S1052623497324825. |
[2] |
A. Auslender, Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone, Optimization Methods and Software, 18 (2003), 359-376.
doi: 10.1080/1055678031000122586. |
[3] |
A. Auslender and H. Ramirez, Penalty and barrier methods for convex semidefinite programming, Mathematical Methods of Operations Research, 63 (2003), 195-219.
doi: 10.1007/s00186-005-0054-0. |
[4] | |
[5] |
R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0653-8. |
[6] |
A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications, MPS-SIAM Series on Optimization. SIAM, Philadelphia, USA, 2001.
doi: 10.1137/1.9780898718829. |
[7] |
Y.-Q. Bai and G. Q. Wang, Primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, Acta Mathematica Sinica, 23 (2007), 2027-2042.
doi: 10.1007/s10114-007-0967-z. |
[8] |
H. Bauschke, O. Güler, A. S. Lewis and S. Sendow, Hyperbolic polynomial and convex analysis, Canadian Journal of Mathematics, 53 (2001), 470-488.
doi: 10.4153/CJM-2001-020-6. |
[9] |
Y.-L. Chang and J.-S. Chen, Convexity of symmetric cone trace functions in Euclidean Jordan algebras, Journal of Nonlinear and Convex Analysis, 14 (2013), 53-61. |
[10] |
J.-S. Chen, X. Chen and P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cone, Mathmatical Programming, 101 (2004), 95-117.
doi: 10.1007/s10107-004-0538-3. |
[11] |
J.-S. Chen, The convex and monotone functions associated with second-order cone, Optimization, 55 (2006), 363-385.
doi: 10.1080/02331930600819514. |
[12] |
J.-S. Chen, T.-K. Liao and S.-H. Pan, Using Schur Complement Theorem to prove convexity of some SOC-functions, submitted manuscript, 2011. |
[13] |
M. Fukushima, Z.-Q. Luo and P. Tseng, Smoothing functions for second-order cone complementarity problems, SIAM Journal on Optimazation, 12 (2002), 436-460.
doi: 10.1137/S1052623400380365. |
[14] |
J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Oxford University Press, New York, 1994. |
[15] |
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1986. |
[16] |
A. Korányi, Monotone functions on formally real Jordan algebras, Mathematische Annalen, 269 (1984), 73-76.
doi: 10.1007/BF01455996. |
[17] |
M. Koecher, The Minnesota Notes on Jordan Algebras and Their Applications, edited and annotated by A.Brieg and S.Walcher, Springer, Berlin, 1999. |
[18] |
R. D. C. Monteiro and T. Tsuchiya, Polynomial convergence of primal-dual algorithms for the second-order cone programs based on the MZ-family of directions, Mathematical Programming, 88 (2000), 61-83.
doi: 10.1007/PL00011378. |
[19] |
J. Peng, C. Roos and T. Terlaky, Self-Regularity, A New Paradigm for Primal-Dual Interior-Point Algorithms, Princeton University Press, 2002. |
[20] |
R. Sznajder, M. S. Gowda and M. M. Moldovan, More results on Schur complements in Euclidean Jordan algebras, J. Glob. Optim., 53 (2012), 121-134.
doi: 10.1007/s10898-011-9734-x. |
[21] |
D. Sun and J. Sun, Löwner's operator and spectral functions in Euclidean Jordan algebras, Mathematics of Operations Research, 33 (2008), 421-445.
doi: 10.1287/moor.1070.0300. |
[22] |
T. Tsuchiya, A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming, Optimization Methods and Software, 11 (1999), 141-182.
doi: 10.1080/10556789908805750. |
show all references
References:
[1] |
A. Auslender, Penalty and barrier methods: a unified framework, SIAM Journal on Optimization, 10 (1999), 211-230.
doi: 10.1137/S1052623497324825. |
[2] |
A. Auslender, Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone, Optimization Methods and Software, 18 (2003), 359-376.
doi: 10.1080/1055678031000122586. |
[3] |
A. Auslender and H. Ramirez, Penalty and barrier methods for convex semidefinite programming, Mathematical Methods of Operations Research, 63 (2003), 195-219.
doi: 10.1007/s00186-005-0054-0. |
[4] | |
[5] |
R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0653-8. |
[6] |
A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications, MPS-SIAM Series on Optimization. SIAM, Philadelphia, USA, 2001.
doi: 10.1137/1.9780898718829. |
[7] |
Y.-Q. Bai and G. Q. Wang, Primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, Acta Mathematica Sinica, 23 (2007), 2027-2042.
doi: 10.1007/s10114-007-0967-z. |
[8] |
H. Bauschke, O. Güler, A. S. Lewis and S. Sendow, Hyperbolic polynomial and convex analysis, Canadian Journal of Mathematics, 53 (2001), 470-488.
doi: 10.4153/CJM-2001-020-6. |
[9] |
Y.-L. Chang and J.-S. Chen, Convexity of symmetric cone trace functions in Euclidean Jordan algebras, Journal of Nonlinear and Convex Analysis, 14 (2013), 53-61. |
[10] |
J.-S. Chen, X. Chen and P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cone, Mathmatical Programming, 101 (2004), 95-117.
doi: 10.1007/s10107-004-0538-3. |
[11] |
J.-S. Chen, The convex and monotone functions associated with second-order cone, Optimization, 55 (2006), 363-385.
doi: 10.1080/02331930600819514. |
[12] |
J.-S. Chen, T.-K. Liao and S.-H. Pan, Using Schur Complement Theorem to prove convexity of some SOC-functions, submitted manuscript, 2011. |
[13] |
M. Fukushima, Z.-Q. Luo and P. Tseng, Smoothing functions for second-order cone complementarity problems, SIAM Journal on Optimazation, 12 (2002), 436-460.
doi: 10.1137/S1052623400380365. |
[14] |
J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Oxford University Press, New York, 1994. |
[15] |
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1986. |
[16] |
A. Korányi, Monotone functions on formally real Jordan algebras, Mathematische Annalen, 269 (1984), 73-76.
doi: 10.1007/BF01455996. |
[17] |
M. Koecher, The Minnesota Notes on Jordan Algebras and Their Applications, edited and annotated by A.Brieg and S.Walcher, Springer, Berlin, 1999. |
[18] |
R. D. C. Monteiro and T. Tsuchiya, Polynomial convergence of primal-dual algorithms for the second-order cone programs based on the MZ-family of directions, Mathematical Programming, 88 (2000), 61-83.
doi: 10.1007/PL00011378. |
[19] |
J. Peng, C. Roos and T. Terlaky, Self-Regularity, A New Paradigm for Primal-Dual Interior-Point Algorithms, Princeton University Press, 2002. |
[20] |
R. Sznajder, M. S. Gowda and M. M. Moldovan, More results on Schur complements in Euclidean Jordan algebras, J. Glob. Optim., 53 (2012), 121-134.
doi: 10.1007/s10898-011-9734-x. |
[21] |
D. Sun and J. Sun, Löwner's operator and spectral functions in Euclidean Jordan algebras, Mathematics of Operations Research, 33 (2008), 421-445.
doi: 10.1287/moor.1070.0300. |
[22] |
T. Tsuchiya, A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming, Optimization Methods and Software, 11 (1999), 141-182.
doi: 10.1080/10556789908805750. |
[1] |
Xin-He Miao, Jein-Shan Chen. Error bounds for symmetric cone complementarity problems. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 627-641. doi: 10.3934/naco.2013.3.627 |
[2] |
Hirobumi Mizuno, Iwao Sato. L-functions and the Selberg trace formulas for semiregular bipartite graphs. Conference Publications, 2003, 2003 (Special) : 638-646. doi: 10.3934/proc.2003.2003.638 |
[3] |
Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1873-1884. doi: 10.3934/jimo.2019033 |
[4] |
Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141 |
[5] |
Yi Zhang, Liwei Zhang, Jia Wu. On the convergence properties of a smoothing approach for mathematical programs with symmetric cone complementarity constraints. Journal of Industrial and Management Optimization, 2018, 14 (3) : 981-1005. doi: 10.3934/jimo.2017086 |
[6] |
Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial and Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733 |
[7] |
Boris Muha. A note on the Trace Theorem for domains which are locally subgraph of a Hölder continuous function. Networks and Heterogeneous Media, 2014, 9 (1) : 191-196. doi: 10.3934/nhm.2014.9.191 |
[8] |
Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic and Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53 |
[9] |
David Ginzburg and Joseph Hundley. The adjoint $L$-function for $GL_5$. Electronic Research Announcements, 2008, 15: 24-32. doi: 10.3934/era.2008.15.24 |
[10] |
Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial and Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53 |
[11] |
Yanqin Bai, Lipu Zhang. A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization. Journal of Industrial and Management Optimization, 2011, 7 (4) : 891-906. doi: 10.3934/jimo.2011.7.891 |
[12] |
Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010 |
[13] |
Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101 |
[14] |
Simona Fornaro, Abdelaziz Rhandi. On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5049-5058. doi: 10.3934/dcds.2013.33.5049 |
[15] |
Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971 |
[16] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[17] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3703-3718. doi: 10.3934/dcdss.2021020 |
[18] |
Andi Kivinukk, Anna Saksa. On Rogosinski-type approximation processes in Banach space using the framework of the cosine operator function. Mathematical Foundations of Computing, 2022, 5 (3) : 197-218. doi: 10.3934/mfc.2021030 |
[19] |
David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic and Related Models, 2022, 15 (4) : 535-550. doi: 10.3934/krm.2021037 |
[20] |
Behrouz Kheirfam. A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 601-614. doi: 10.3934/naco.2013.3.601 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]