-
Previous Article
An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials
- NACO Home
- This Issue
-
Next Article
Adjacent vertex distinguishing edge-colorings and total-colorings of the Cartesian product of graphs
Grasping force based manipulation for multifingered hand-arm Robot using neural networks
1. | Department of Electrical Engineering, I-Shou University, Kaohsiung City 84001, Taiwan, Taiwan |
References:
[1] |
P. H. Borgstrom, M. A. Batalinx, G. S. Sukhatmez and W. J. Kaiser, Weighted barrier functions for computation of force distributions with friction cone constraints, IEEE Int. Conf. Robot. Autom., (2010), 785-792. |
[2] |
S. P. Boyd and B. Wegbreit, Fast computation of optimal contact forces, IEEE Trans. Robot., 23 (2007), 1117-1132. |
[3] |
W. Chung, C. Rhee, Y. Shim, H. Lee and S. Park, Door-opening control of a service robot using the multifingered robot hand, IEEE Trans. Ind. Electron., 56 (2009), 3975-3984. |
[4] |
L. Han, J. C. Trinkle and Z. X. Li, Grasp analysis as linear matrix inequality problems, IEEE Trans. Robot. Autom., 16 (2000), 663-674. |
[5] |
M. H. Hassoun, Fundamentals of Artificial Neural Networks, MIT Press, 1995. |
[6] |
U. Helmke, K. Huper and J. B. Moore, Quadratically convergent algorithms for optimal dexterous hand grasping, IEEE Trans. Robot. Autom., 18 (2002), 138-146. |
[7] |
A. Kawamura, K. Tahara, R. Kurazume and T. Hasegawa, Dynamic grasping for an arbitrary polyhedral object by a multi-fingered hand-arm system, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 2264-2270. |
[8] |
C. H. Ko, J. S. Chen and C. Y. Yang, Recurrent neural networks for solving second-order cone programs, Neurocomputing, 74 (2011), 3646-3653. |
[9] |
C. H. Ko, S. H. Lin and J. K. Chen, Motion planning of multifingered hand-arm system with optimal grasping force, IEEE 2nd Int. Symp. Next-Generation Electron., (2013), 262-265. |
[10] |
V. Lippiello, B. Siciliano and L. Villani, A grasping force optimization algorithm for multiarm robots with multifingered hands, IEEE Trans. Robot., 29 (2013), 55-67. |
[11] |
Y. H. Liu, Qualitative test and force optimization of 3D frictional form-closure grasps using linear programming, IEEE Trans. Robot. Autom., 15 (1999), 163-173. |
[12] |
R. Michalec and A. Micaelli, Optimal tightening forces for multi-fingered robust manipulation, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 4160-4167. |
[13] |
R. M. Murray, Z. Li and S. S. Sastry, Mathematical Introduction to Robotic Manipulation, CRC Press, 1994. |
[14] |
S. H. Pan and J. S. Chen, A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions, Comp. Optim. Appl., 45 (2010), 59-88.
doi: 10.1007/s10589-008-9166-9. |
[15] |
D. Prattichizzo, M. Malvezzi, M. Aggravi and T. Wimböck, Object motion-decoupled internal force control for a compliant multifingered hand, IEEE Int. Conf. Robot. Autom., (2012), 1508-1513. |
[16] |
L. Qi and J. Sun, A nonsmooth version of Newtons method, Mathematical Programming, 58 (1993), 353-367.
doi: 10.1007/BF01581275. |
[17] |
H. Scharfe, N. Hendrich and J. Zhang, Hybrid physics simulation of multi-fingered hands for dexterous in-hand manipulation, IEEE Int. Conf. Robot. Autom., (2012), 3777-3783. |
[18] |
T. Tsuji, K. Harada and K. Kaneko, Easy and fast evaluation of grasp stability by using ellipsoidal approximation of friction cone, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 1830-1837. |
[19] |
J. Xu and Z. Li, A kinematic model of finger gaits by multifingered hand as hybrid automaton, IEEE Trans. Autom. Sci. Eng., 50 (2008), 467-479. |
show all references
References:
[1] |
P. H. Borgstrom, M. A. Batalinx, G. S. Sukhatmez and W. J. Kaiser, Weighted barrier functions for computation of force distributions with friction cone constraints, IEEE Int. Conf. Robot. Autom., (2010), 785-792. |
[2] |
S. P. Boyd and B. Wegbreit, Fast computation of optimal contact forces, IEEE Trans. Robot., 23 (2007), 1117-1132. |
[3] |
W. Chung, C. Rhee, Y. Shim, H. Lee and S. Park, Door-opening control of a service robot using the multifingered robot hand, IEEE Trans. Ind. Electron., 56 (2009), 3975-3984. |
[4] |
L. Han, J. C. Trinkle and Z. X. Li, Grasp analysis as linear matrix inequality problems, IEEE Trans. Robot. Autom., 16 (2000), 663-674. |
[5] |
M. H. Hassoun, Fundamentals of Artificial Neural Networks, MIT Press, 1995. |
[6] |
U. Helmke, K. Huper and J. B. Moore, Quadratically convergent algorithms for optimal dexterous hand grasping, IEEE Trans. Robot. Autom., 18 (2002), 138-146. |
[7] |
A. Kawamura, K. Tahara, R. Kurazume and T. Hasegawa, Dynamic grasping for an arbitrary polyhedral object by a multi-fingered hand-arm system, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 2264-2270. |
[8] |
C. H. Ko, J. S. Chen and C. Y. Yang, Recurrent neural networks for solving second-order cone programs, Neurocomputing, 74 (2011), 3646-3653. |
[9] |
C. H. Ko, S. H. Lin and J. K. Chen, Motion planning of multifingered hand-arm system with optimal grasping force, IEEE 2nd Int. Symp. Next-Generation Electron., (2013), 262-265. |
[10] |
V. Lippiello, B. Siciliano and L. Villani, A grasping force optimization algorithm for multiarm robots with multifingered hands, IEEE Trans. Robot., 29 (2013), 55-67. |
[11] |
Y. H. Liu, Qualitative test and force optimization of 3D frictional form-closure grasps using linear programming, IEEE Trans. Robot. Autom., 15 (1999), 163-173. |
[12] |
R. Michalec and A. Micaelli, Optimal tightening forces for multi-fingered robust manipulation, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 4160-4167. |
[13] |
R. M. Murray, Z. Li and S. S. Sastry, Mathematical Introduction to Robotic Manipulation, CRC Press, 1994. |
[14] |
S. H. Pan and J. S. Chen, A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions, Comp. Optim. Appl., 45 (2010), 59-88.
doi: 10.1007/s10589-008-9166-9. |
[15] |
D. Prattichizzo, M. Malvezzi, M. Aggravi and T. Wimböck, Object motion-decoupled internal force control for a compliant multifingered hand, IEEE Int. Conf. Robot. Autom., (2012), 1508-1513. |
[16] |
L. Qi and J. Sun, A nonsmooth version of Newtons method, Mathematical Programming, 58 (1993), 353-367.
doi: 10.1007/BF01581275. |
[17] |
H. Scharfe, N. Hendrich and J. Zhang, Hybrid physics simulation of multi-fingered hands for dexterous in-hand manipulation, IEEE Int. Conf. Robot. Autom., (2012), 3777-3783. |
[18] |
T. Tsuji, K. Harada and K. Kaneko, Easy and fast evaluation of grasp stability by using ellipsoidal approximation of friction cone, IEEE/RSJ Int. Conf. Intel. Robots Syst., (2009), 1830-1837. |
[19] |
J. Xu and Z. Li, A kinematic model of finger gaits by multifingered hand as hybrid automaton, IEEE Trans. Autom. Sci. Eng., 50 (2008), 467-479. |
[1] |
Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 |
[2] |
Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171 |
[3] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111 |
[4] |
Ye Tian, Shu-Cherng Fang, Zhibin Deng, Wenxun Xing. Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positive programming. Journal of Industrial and Management Optimization, 2013, 9 (3) : 703-721. doi: 10.3934/jimo.2013.9.703 |
[5] |
Xi-De Zhu, Li-Ping Pang, Gui-Hua Lin. Two approaches for solving mathematical programs with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2015, 11 (3) : 951-968. doi: 10.3934/jimo.2015.11.951 |
[6] |
Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089 |
[7] |
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1 |
[8] |
Xin-He Miao, Kai Yao, Ching-Yu Yang, Jein-Shan Chen. Levenberg-Marquardt method for absolute value equation associated with second-order cone. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 47-61. doi: 10.3934/naco.2021050 |
[9] |
Lin Zhu, Xinzhen Zhang. Semidefinite relaxation method for polynomial optimization with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1505-1517. doi: 10.3934/jimo.2021030 |
[10] |
José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1 |
[11] |
Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339 |
[12] |
Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965 |
[13] |
Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064 |
[14] |
Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053 |
[15] |
Qilin Wang, Xiao-Bing Li, Guolin Yu. Second-order weak composed epiderivatives and applications to optimality conditions. Journal of Industrial and Management Optimization, 2013, 9 (2) : 455-470. doi: 10.3934/jimo.2013.9.455 |
[16] |
W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209 |
[17] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[18] |
Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581 |
[19] |
José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213 |
[20] |
Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]