-
Previous Article
A smooth QP-free algorithm without a penalty function or a filter for mathematical programs with complementarity constraints
- NACO Home
- This Issue
-
Next Article
Primal-dual approximation algorithms for submodular cost set cover problems with linear/submodular penalties
Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term
1. | College of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, China, China, China, China |
References:
[1] |
M. Achache and L. Guerra, A full Nesterov-Todd step feasible primal-dual interior-point algorithm for convex quadratic semidefinite optimization, Applied Mathematics and Computation, 231 (2014), 581-590.
doi: 10.1016/j.amc.2013.12.070. |
[2] |
Y. Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM Journal on Optimization, 15 (2004), 101-128.
doi: 10.1137/S1052623403423114. |
[3] |
X. Z. Cai, G. Q. Wang, M. El Ghami and Y. J. Yue, Complexity analysis of primal-dual interior-point methods for linear optimization based on a parametric kernel function with a trigonometric barrier term, Abstract and Applied Analysis, 2014 (2014), 710158.
doi: 10.1155/2014/710158. |
[4] |
B. K. Choi. and G. M. Lee, On complexity analysis of the primal-dual interior-point method for semidefinite optimization problem based on a new proximity function, Nonlinear Analysis, Theory, Methods & Applications, 71 (2009), 2628-2640.
doi: 10.1016/j.na.2009.05.078. |
[5] |
Zs. Darvay, New interior point algorithms in linear programming, Advanced Modeling and Optimization, 5 (2003), 51-92. |
[6] |
E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.
doi: 10.1007/b105286. |
[7] |
M. El Ghami, Z. A. Guennounb, S. Bouali and T. Steihaug, Interior-point methods for linear optimization based on a kernel function with a trigonometric barrier term, Journal of Computational and Applied Mathematics, 236 (2012), 3613-3623.
doi: 10.1016/j.cam.2011.05.036. |
[8] |
M. El Ghami, C. Roos and T. Steihaug, A generic primal-dual interior-point method for semidefinite optimization based on a new class of kernel functions, Optimization Methods & Software, 25 (2010), 387-403.
doi: 10.1080/10556780903239048. |
[9] |
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, UK, 1991.
doi: 10.1017/CBO9780511840371. |
[10] |
B. Kheirfam, Simplified infeasible interior-point algorithm for SDO using full Nesterov-Todd step, Numerical Algorithms, 59 (2012), 589-606.
doi: 10.1007/s11075-011-9506-1. |
[11] |
M. Kojima, M. Shida and S. Shindoh, Local convergence of predictor-corrector infeasible-interior-point method for SDPs and SDLCPs, Mathematical Programming, 80 (1998), 129-160.
doi: 10.1007/BF01581723. |
[12] |
H. W. Liu, C. H. Liu and X. M. Yang, New complexity analysis of a Mehrotra-type predictor-corrector algorithm for semidefinite programming, Optimization Methods & Software, 28 (2013), 1179-1194.
doi: 10.1080/10556788.2012.679270. |
[13] |
H. Mansouri and C. Roos, A new full-Newton step O(n) infeasible interior-point algorithm for semidefinite optimization, Numerical Algorithms, 52 (2009), 225-255.
doi: 10.1007/s11075-009-9270-7. |
[14] |
J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Mathematical Programming, 93 (2002), 129-171.
doi: 10.1007/s101070200296. |
[15] |
M. R. Peyghami, An interior-point approach for semidefinite optimization using new proximity functions, Asia-Pacific Journal of Operational Research, 26 (2009), 365-382.
doi: 10.1142/S0217595909002250. |
[16] |
M. R. Peyghami and S. F. Hafshejani, Complexity analysis of an interior-point algorithm for linear optimization based on a new proximity function, Numerical Algorithms, 67 (2014), 33-48.
doi: 10.1007/s11075-013-9772-1. |
[17] |
M. R. Peyghami, S. F. Hafshejani and L. Shirvani, Complexity of interior-point methods for linear optimization based on a new trigonometric kernel function, Journal of Computational and Applied Mathematics, 255 (2014), 74-85.
doi: 10.1016/j.cam.2013.04.039. |
[18] |
C. Roos, T. Terlaky and J.-Ph. Vial, Theory and Algorithms for Linear Optimization, Springer, New York, 2005. |
[19] |
G. Q. Wang and Y. Q. Bai, A new primal-dual path-following interior-point algorithm for semidefinite optimization, Journal of Mathematical Analysis and Applications, 353 (2009), 339-349.
doi: 10.1016/j.jmaa.2008.12.016. |
[20] |
G. Q. Wang, Y. Q. Bai and C. Roos, Primal-dual interior-point algorithms for semidefinite optimization based on a simple kernel function, Journal of Mathematical Modelling and Algorithms, 4 (2005), 409-433. |
[21] |
G. Q. Wang and D. T. Zhu., A unified kernel function approach to primal-dual interior-point algorithms for convex quadratic SDO, Numerical Algorithms, 57 (2011), 537-558.
doi: 10.1007/s11075-010-9444-3. |
[22] |
L. P. Zhang, Y. H. Xu and Z. J. Jin, An efficient algorithm for convex quadratic semidefinite optimization, Numerical Algebra, Control and Optimization, 2 (2012), 129-144.
doi: 10.3934/naco.2012.2.129. |
[23] |
M. W. Zhang, A large-update interior-point algorithm for convex quadratic semidefinite optimization based on a new kernel function, Acta Mathematica Sinica (English Series), 28 (2012), 2313-2328.
doi: 10.1007/s10114-012-0194-0. |
[24] |
Y. Zhang, On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming, SIAM Journal on Optimization, 8 (1998), 365-386.
doi: 10.1137/S1052623495296115. |
show all references
References:
[1] |
M. Achache and L. Guerra, A full Nesterov-Todd step feasible primal-dual interior-point algorithm for convex quadratic semidefinite optimization, Applied Mathematics and Computation, 231 (2014), 581-590.
doi: 10.1016/j.amc.2013.12.070. |
[2] |
Y. Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM Journal on Optimization, 15 (2004), 101-128.
doi: 10.1137/S1052623403423114. |
[3] |
X. Z. Cai, G. Q. Wang, M. El Ghami and Y. J. Yue, Complexity analysis of primal-dual interior-point methods for linear optimization based on a parametric kernel function with a trigonometric barrier term, Abstract and Applied Analysis, 2014 (2014), 710158.
doi: 10.1155/2014/710158. |
[4] |
B. K. Choi. and G. M. Lee, On complexity analysis of the primal-dual interior-point method for semidefinite optimization problem based on a new proximity function, Nonlinear Analysis, Theory, Methods & Applications, 71 (2009), 2628-2640.
doi: 10.1016/j.na.2009.05.078. |
[5] |
Zs. Darvay, New interior point algorithms in linear programming, Advanced Modeling and Optimization, 5 (2003), 51-92. |
[6] |
E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.
doi: 10.1007/b105286. |
[7] |
M. El Ghami, Z. A. Guennounb, S. Bouali and T. Steihaug, Interior-point methods for linear optimization based on a kernel function with a trigonometric barrier term, Journal of Computational and Applied Mathematics, 236 (2012), 3613-3623.
doi: 10.1016/j.cam.2011.05.036. |
[8] |
M. El Ghami, C. Roos and T. Steihaug, A generic primal-dual interior-point method for semidefinite optimization based on a new class of kernel functions, Optimization Methods & Software, 25 (2010), 387-403.
doi: 10.1080/10556780903239048. |
[9] |
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, UK, 1991.
doi: 10.1017/CBO9780511840371. |
[10] |
B. Kheirfam, Simplified infeasible interior-point algorithm for SDO using full Nesterov-Todd step, Numerical Algorithms, 59 (2012), 589-606.
doi: 10.1007/s11075-011-9506-1. |
[11] |
M. Kojima, M. Shida and S. Shindoh, Local convergence of predictor-corrector infeasible-interior-point method for SDPs and SDLCPs, Mathematical Programming, 80 (1998), 129-160.
doi: 10.1007/BF01581723. |
[12] |
H. W. Liu, C. H. Liu and X. M. Yang, New complexity analysis of a Mehrotra-type predictor-corrector algorithm for semidefinite programming, Optimization Methods & Software, 28 (2013), 1179-1194.
doi: 10.1080/10556788.2012.679270. |
[13] |
H. Mansouri and C. Roos, A new full-Newton step O(n) infeasible interior-point algorithm for semidefinite optimization, Numerical Algorithms, 52 (2009), 225-255.
doi: 10.1007/s11075-009-9270-7. |
[14] |
J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Mathematical Programming, 93 (2002), 129-171.
doi: 10.1007/s101070200296. |
[15] |
M. R. Peyghami, An interior-point approach for semidefinite optimization using new proximity functions, Asia-Pacific Journal of Operational Research, 26 (2009), 365-382.
doi: 10.1142/S0217595909002250. |
[16] |
M. R. Peyghami and S. F. Hafshejani, Complexity analysis of an interior-point algorithm for linear optimization based on a new proximity function, Numerical Algorithms, 67 (2014), 33-48.
doi: 10.1007/s11075-013-9772-1. |
[17] |
M. R. Peyghami, S. F. Hafshejani and L. Shirvani, Complexity of interior-point methods for linear optimization based on a new trigonometric kernel function, Journal of Computational and Applied Mathematics, 255 (2014), 74-85.
doi: 10.1016/j.cam.2013.04.039. |
[18] |
C. Roos, T. Terlaky and J.-Ph. Vial, Theory and Algorithms for Linear Optimization, Springer, New York, 2005. |
[19] |
G. Q. Wang and Y. Q. Bai, A new primal-dual path-following interior-point algorithm for semidefinite optimization, Journal of Mathematical Analysis and Applications, 353 (2009), 339-349.
doi: 10.1016/j.jmaa.2008.12.016. |
[20] |
G. Q. Wang, Y. Q. Bai and C. Roos, Primal-dual interior-point algorithms for semidefinite optimization based on a simple kernel function, Journal of Mathematical Modelling and Algorithms, 4 (2005), 409-433. |
[21] |
G. Q. Wang and D. T. Zhu., A unified kernel function approach to primal-dual interior-point algorithms for convex quadratic SDO, Numerical Algorithms, 57 (2011), 537-558.
doi: 10.1007/s11075-010-9444-3. |
[22] |
L. P. Zhang, Y. H. Xu and Z. J. Jin, An efficient algorithm for convex quadratic semidefinite optimization, Numerical Algebra, Control and Optimization, 2 (2012), 129-144.
doi: 10.3934/naco.2012.2.129. |
[23] |
M. W. Zhang, A large-update interior-point algorithm for convex quadratic semidefinite optimization based on a new kernel function, Acta Mathematica Sinica (English Series), 28 (2012), 2313-2328.
doi: 10.1007/s10114-012-0194-0. |
[24] |
Y. Zhang, On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming, SIAM Journal on Optimization, 8 (1998), 365-386.
doi: 10.1137/S1052623495296115. |
[1] |
Siqi Li, Weiyi Qian. Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 37-46. doi: 10.3934/naco.2015.5.37 |
[2] |
Ayache Benhadid, Fateh Merahi. Complexity analysis of an interior-point algorithm for linear optimization based on a new parametric kernel function with a double barrier term. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022003 |
[3] |
Behrouz Kheirfam. A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 601-614. doi: 10.3934/naco.2013.3.601 |
[4] |
Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015 |
[5] |
Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomial-time interior-point method for circular cone programming based on kernel functions. Journal of Industrial and Management Optimization, 2016, 12 (2) : 739-756. doi: 10.3934/jimo.2016.12.739 |
[6] |
Jie Sun. On methods for solving nonlinear semidefinite optimization problems. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 1-14. doi: 10.3934/naco.2011.1.1 |
[7] |
Yanqin Bai, Xuerui Gao, Guoqiang Wang. Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 211-231. doi: 10.3934/naco.2015.5.211 |
[8] |
Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial and Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949 |
[9] |
Yanqin Bai, Lipu Zhang. A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization. Journal of Industrial and Management Optimization, 2011, 7 (4) : 891-906. doi: 10.3934/jimo.2011.7.891 |
[10] |
Yinghong Xu, Lipu Zhang, Jing Zhang. A full-modified-Newton step infeasible interior-point algorithm for linear optimization. Journal of Industrial and Management Optimization, 2016, 12 (1) : 103-116. doi: 10.3934/jimo.2016.12.103 |
[11] |
Yanxing Cui, Chuanlong Wang, Ruiping Wen. On the convergence of generalized parallel multisplitting iterative methods for semidefinite linear systems. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 863-873. doi: 10.3934/naco.2012.2.863 |
[12] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[13] |
Yu-Hong Dai, Xin-Wei Liu, Jie Sun. A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs. Journal of Industrial and Management Optimization, 2020, 16 (2) : 1009-1035. doi: 10.3934/jimo.2018190 |
[14] |
Soodabeh Asadi, Hossein Mansouri. A Mehrotra type predictor-corrector interior-point algorithm for linear programming. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 147-156. doi: 10.3934/naco.2019011 |
[15] |
Hong Seng Sim, Chuei Yee Chen, Wah June Leong, Jiao Li. Nonmonotone spectral gradient method based on memoryless symmetric rank-one update for large-scale unconstrained optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021143 |
[16] |
Jake Bouvrie, Boumediene Hamzi. Kernel methods for the approximation of some key quantities of nonlinear systems. Journal of Computational Dynamics, 2017, 4 (1&2) : 1-19. doi: 10.3934/jcd.2017001 |
[17] |
Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043 |
[18] |
Behrouz Kheirfam, Guoqiang Wang. An infeasible full NT-step interior point method for circular optimization. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 171-184. doi: 10.3934/naco.2017011 |
[19] |
Lin Zhu, Xinzhen Zhang. Semidefinite relaxation method for polynomial optimization with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1505-1517. doi: 10.3934/jimo.2021030 |
[20] |
Mauro Pontani. Orbital transfers: optimization methods and recent results. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 435-485. doi: 10.3934/naco.2011.1.435 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]