-
Previous Article
On the global convergence of a parameter-adjusting Levenberg-Marquardt method
- NACO Home
- This Issue
-
Next Article
Determining the viability for hybrid control systems on a region with piecewise smooth boundary
Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems
1. | College of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, China, China |
2. | Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China |
3. | Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China |
References:
[1] |
S. F. Chen, Stability analysis for 2-D systems with interval time-varying delays and saturation nonlinearities, Signal Process, 90 (2010), 2265-2275. |
[2] |
S. F. Chen and I. K. Fong, Delay-dependent robust stability and stabilization of two-dimensional with state-delayed systems, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, 16 (2009), 1-17. |
[3] |
S. F. Chen, Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model, Applied Mathematics and Computation, 216 (2010), 2613-2622.
doi: 10.1016/j.amc.2010.03.104. |
[4] |
A. Dhawan and H. Kar, Optimal guaranteed cost control of 2-D discrete uncertain systems: An LMI approach, Signal Processing, 87 (2007), 3075-3085. |
[5] |
A. Dhawan and H. Kar, An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model, Signal Processing, 90 (2010), 2648-2654. |
[6] |
A. Dhawan and H. Kar, An improved LMI-based criterion for the design of optimal guaranteed cost controller for 2-D discrete uncertain systems, Signal Processing, 91 (2011), 1032-1035. |
[7] |
A. Dhawa and H. Kar, LMI-based criterion for the robust guaranteed cost control of 2-D systems described by the Fornasini-Marchesini second model, Signal Process, 87 (2007), 479-488. |
[8] |
C. Du, L. Xie and C. Zhang, H∞ control and robust stabilization of two-dimensional system in Roesser models, Automatica, 37 (2001), 205-211.
doi: 10.1016/S0005-1098(00)00155-2. |
[9] |
C. Du and L. Xie, Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 46 (1999), 1371-1374. |
[10] |
Z. X. Duan, Z. R Xiang and H. R Karimi, Delay-dependent exponential stabilization of positive 2D switched state-delayed systems in the Roesser model, Information Sciences, 272 (2014), 173-184.
doi: 10.1016/j.ins.2014.02.121. |
[11] |
L. El Ghaoui, F. Oustry and M. AitRami, A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Transactions on Automatic Control, 42 (1997), 1171-1176.
doi: 10.1109/9.618250. |
[12] |
X. P. Guan, Z. Y. Lin and G. R. Duan, Robust guaranteed cost control for 2-D discrete systems, IEE Proc. Control Theory Appl., 148 (2001), 355-361. |
[13] |
T. Hinamoto, Stability of 2-D discrete systems described by the Fornasini-Marchesini second model, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 44 (1997), 254-257.
doi: 10.1109/81.557373. |
[14] |
T. Kaczorek, Two-Dimensional Linear System, Berlin, Germany: Springer-Verlag, 1985. |
[15] |
Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, International Journal of control, 74 (2001), 1447-1455.
doi: 10.1080/00207170110067116. |
[16] |
W. Paszke, K. Galkowski, E. Rogers and D. H. Owens, H-infinity and guaranteed cost control of discrete linear repetitive processes, Linear Algebra Appl., 412 (2006), 93-131.
doi: 10.1016/j.laa.2005.01.037. |
[17] |
W. Paszke, J. Lam, K. Galkowski, S. Xu and Z. Lin, Robust stability and stabilisation of 2-D discrete state-delayed systems, Syst. Control Lett., 51 (2004), 278-291.
doi: 10.1016/j.sysconle.2003.09.003. |
[18] |
W. Paszke, J. Lam, K. Galkowski, S. Xu and E. Rogers, H∞ control of 2-D linear state-delayed systems, in The 4th IFAC Workshop on Time-Delay Systems (France), September, (2003), 8-10. |
[19] |
D. Peng, X. Guan and C. Long, Robust output feedback guaranteed cost control for 2-D uncertain state delayed systems, Asian J. Control, 9 (2004), 470-474.
doi: 10.1111/j.1934-6093.2007.tb00436.x. |
[20] |
D. Peng and X. Guan, Output feedback H∞ control for 2D state-delayed systems, Circuits Syst. Signal Process, 28 (2009), 147-167.
doi: 10.1007/s00034-008-9074-3. |
[21] |
L. M. Wang, S. Y. Mo, D. H. Zhou and F. R. Gao, Robust design of feedback integrated with iterative learning control for batch processes with uncertainties and interval time-varying delays, J. Process Control, 21 (2011), 987-996. |
[22] |
L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Robust delay dependent iterative learning fault-tolerant control for batch processes with state delay and actuator failures, J. Process Control, 22 (2012), 1273-1286. |
[23] |
L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Delay-range-dependent robust 2D iterative learning control for batch processes with state delay and uncertainties, J. Process Control, 23 (2013), 715-730. |
[24] |
L. M. Wang, X. Chen and F. R. Gao, Delay-range-dependent robust BIBO stabilization of 2D discrete delayed systems via LMI approach, In Proceedings of 19th IFAC World Congress, (2014), 10994-10999. |
[25] |
L. Wu, P. Shi, H. Gao and C. Wang, H∞ mode reduction for two-dimensional discrete state-delayed systems, IEE Proc. Vis. Image Signal Process, 156 (2006), 769-784. |
[26] |
J. M. Xu and L. Yu, Delay-dependent guaranteed cost control for uncertain 2-D discrete systems with state delay in the FM second model, Journal of the Franklin Institute, 346 (2009), 159-174.
doi: 10.1016/j.jfranklin.2008.08.003. |
[27] |
J. M. Xu and L. Yu, Delay-dependent robust H∞ control for uncertain 2-D discrete state-delay systems in the second FM model, Multi-dimensional Syst. Signal Process, 20 (2009), 333-349. |
[28] |
S. Ye, W. Wang and Y. Zou, Robust guaranteed cost control for class of two-dimensional discrete systems with shift-delays, Multi-dimensional Syst. Signal Process, 20 (2009), 297-307.
doi: 10.1007/s11045-008-0063-2. |
[29] |
S. X. Ye, J. Z. Li and J. Yao, Robust H∞ control for a class of 2-D discrete delayed systems, ISA Transactions, 53 (2015), 1456-1462. |
[30] |
K. W. Yu and C. H. Lien, Stability criteria for uncertain neutral systems with interval time-varying delays, Chaos, Solitons and Fractals, 38 (2008), 650-657.
doi: 10.1016/j.chaos.2007.01.002. |
show all references
References:
[1] |
S. F. Chen, Stability analysis for 2-D systems with interval time-varying delays and saturation nonlinearities, Signal Process, 90 (2010), 2265-2275. |
[2] |
S. F. Chen and I. K. Fong, Delay-dependent robust stability and stabilization of two-dimensional with state-delayed systems, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, 16 (2009), 1-17. |
[3] |
S. F. Chen, Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model, Applied Mathematics and Computation, 216 (2010), 2613-2622.
doi: 10.1016/j.amc.2010.03.104. |
[4] |
A. Dhawan and H. Kar, Optimal guaranteed cost control of 2-D discrete uncertain systems: An LMI approach, Signal Processing, 87 (2007), 3075-3085. |
[5] |
A. Dhawan and H. Kar, An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model, Signal Processing, 90 (2010), 2648-2654. |
[6] |
A. Dhawan and H. Kar, An improved LMI-based criterion for the design of optimal guaranteed cost controller for 2-D discrete uncertain systems, Signal Processing, 91 (2011), 1032-1035. |
[7] |
A. Dhawa and H. Kar, LMI-based criterion for the robust guaranteed cost control of 2-D systems described by the Fornasini-Marchesini second model, Signal Process, 87 (2007), 479-488. |
[8] |
C. Du, L. Xie and C. Zhang, H∞ control and robust stabilization of two-dimensional system in Roesser models, Automatica, 37 (2001), 205-211.
doi: 10.1016/S0005-1098(00)00155-2. |
[9] |
C. Du and L. Xie, Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 46 (1999), 1371-1374. |
[10] |
Z. X. Duan, Z. R Xiang and H. R Karimi, Delay-dependent exponential stabilization of positive 2D switched state-delayed systems in the Roesser model, Information Sciences, 272 (2014), 173-184.
doi: 10.1016/j.ins.2014.02.121. |
[11] |
L. El Ghaoui, F. Oustry and M. AitRami, A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE Transactions on Automatic Control, 42 (1997), 1171-1176.
doi: 10.1109/9.618250. |
[12] |
X. P. Guan, Z. Y. Lin and G. R. Duan, Robust guaranteed cost control for 2-D discrete systems, IEE Proc. Control Theory Appl., 148 (2001), 355-361. |
[13] |
T. Hinamoto, Stability of 2-D discrete systems described by the Fornasini-Marchesini second model, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 44 (1997), 254-257.
doi: 10.1109/81.557373. |
[14] |
T. Kaczorek, Two-Dimensional Linear System, Berlin, Germany: Springer-Verlag, 1985. |
[15] |
Y. S. Moon, P. Park, W. H. Kwon and Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, International Journal of control, 74 (2001), 1447-1455.
doi: 10.1080/00207170110067116. |
[16] |
W. Paszke, K. Galkowski, E. Rogers and D. H. Owens, H-infinity and guaranteed cost control of discrete linear repetitive processes, Linear Algebra Appl., 412 (2006), 93-131.
doi: 10.1016/j.laa.2005.01.037. |
[17] |
W. Paszke, J. Lam, K. Galkowski, S. Xu and Z. Lin, Robust stability and stabilisation of 2-D discrete state-delayed systems, Syst. Control Lett., 51 (2004), 278-291.
doi: 10.1016/j.sysconle.2003.09.003. |
[18] |
W. Paszke, J. Lam, K. Galkowski, S. Xu and E. Rogers, H∞ control of 2-D linear state-delayed systems, in The 4th IFAC Workshop on Time-Delay Systems (France), September, (2003), 8-10. |
[19] |
D. Peng, X. Guan and C. Long, Robust output feedback guaranteed cost control for 2-D uncertain state delayed systems, Asian J. Control, 9 (2004), 470-474.
doi: 10.1111/j.1934-6093.2007.tb00436.x. |
[20] |
D. Peng and X. Guan, Output feedback H∞ control for 2D state-delayed systems, Circuits Syst. Signal Process, 28 (2009), 147-167.
doi: 10.1007/s00034-008-9074-3. |
[21] |
L. M. Wang, S. Y. Mo, D. H. Zhou and F. R. Gao, Robust design of feedback integrated with iterative learning control for batch processes with uncertainties and interval time-varying delays, J. Process Control, 21 (2011), 987-996. |
[22] |
L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Robust delay dependent iterative learning fault-tolerant control for batch processes with state delay and actuator failures, J. Process Control, 22 (2012), 1273-1286. |
[23] |
L. M. Wang, S. Y. Mo, D. H. Zhou, F. R. Gao and X. Chen, Delay-range-dependent robust 2D iterative learning control for batch processes with state delay and uncertainties, J. Process Control, 23 (2013), 715-730. |
[24] |
L. M. Wang, X. Chen and F. R. Gao, Delay-range-dependent robust BIBO stabilization of 2D discrete delayed systems via LMI approach, In Proceedings of 19th IFAC World Congress, (2014), 10994-10999. |
[25] |
L. Wu, P. Shi, H. Gao and C. Wang, H∞ mode reduction for two-dimensional discrete state-delayed systems, IEE Proc. Vis. Image Signal Process, 156 (2006), 769-784. |
[26] |
J. M. Xu and L. Yu, Delay-dependent guaranteed cost control for uncertain 2-D discrete systems with state delay in the FM second model, Journal of the Franklin Institute, 346 (2009), 159-174.
doi: 10.1016/j.jfranklin.2008.08.003. |
[27] |
J. M. Xu and L. Yu, Delay-dependent robust H∞ control for uncertain 2-D discrete state-delay systems in the second FM model, Multi-dimensional Syst. Signal Process, 20 (2009), 333-349. |
[28] |
S. Ye, W. Wang and Y. Zou, Robust guaranteed cost control for class of two-dimensional discrete systems with shift-delays, Multi-dimensional Syst. Signal Process, 20 (2009), 297-307.
doi: 10.1007/s11045-008-0063-2. |
[29] |
S. X. Ye, J. Z. Li and J. Yao, Robust H∞ control for a class of 2-D discrete delayed systems, ISA Transactions, 53 (2015), 1456-1462. |
[30] |
K. W. Yu and C. H. Lien, Stability criteria for uncertain neutral systems with interval time-varying delays, Chaos, Solitons and Fractals, 38 (2008), 650-657.
doi: 10.1016/j.chaos.2007.01.002. |
[1] |
Honglei Xu, Kok Lay Teo. $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach. Journal of Industrial and Management Optimization, 2009, 5 (1) : 153-159. doi: 10.3934/jimo.2009.5.153 |
[2] |
Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303 |
[3] |
M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 365-384. doi: 10.3934/dcdsb.2005.5.365 |
[4] |
Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 197-212. doi: 10.3934/dcdss.2021036 |
[5] |
Liqiang Jin, Yanyan Yin, Kok Lay Teo, Fei Liu. Event-triggered mixed $ H_\infty $ and passive control for Markov jump systems with bounded inputs. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1343-1355. doi: 10.3934/jimo.2020024 |
[6] |
Junlin Xiong, Wenjie Liu. $ H_{\infty} $ observer-based control for large-scale systems with sparse observer communication network. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 331-343. doi: 10.3934/naco.2020005 |
[7] |
Ramalingam Sakthivel, Palanisamy Selvaraj, Yeong-Jae Kim, Dong-Hoon Lee, Oh-Min Kwon, Rathinasamy Sakthivel. Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022028 |
[8] |
Zhaoxia Duan, Jinling Liang, Zhengrong Xiang. $ H_{\infty} $ control for continuous-discrete systems in T-S fuzzy model with finite frequency specifications. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022064 |
[9] |
Liqiang Jin, Yanqing Liu, Yanyan Yin, Kok Lay Teo, Fei Liu. Design of probabilistic $ l_2-l_\infty $ filter for uncertain Markov jump systems with partial information of the transition probabilities. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2335-2349. doi: 10.3934/jimo.2021070 |
[10] |
Zhong-Qiang Wu, Xi-Bo Zhao. Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1565-1577. doi: 10.3934/jimo.2018021 |
[11] |
Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial and Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175 |
[12] |
Vladimir Pozdyayev. 2D system analysis via dual problems and polynomial matrix inequalities. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 491-504. doi: 10.3934/naco.2016022 |
[13] |
Canghua Jiang, Dongming Zhang, Chi Yuan, Kok Ley Teo. An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 135-157. doi: 10.3934/naco.2021056 |
[14] |
Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181 |
[15] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004 |
[16] |
Franck Boyer, Guillaume Olive. Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Mathematical Control and Related Fields, 2014, 4 (3) : 263-287. doi: 10.3934/mcrf.2014.4.263 |
[17] |
Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243 |
[18] |
Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463 |
[19] |
Daniel Alpay, Eduard Tsekanovskiĭ. Subclasses of Herglotz-Nevanlinna matrix-valued functtons and linear systems. Conference Publications, 2001, 2001 (Special) : 1-13. doi: 10.3934/proc.2001.2001.1 |
[20] |
Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]