2015, 5(3): 237-249. doi: 10.3934/naco.2015.5.237

A quasi-Newton trust region method based on a new fractional model

1. 

Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. 

Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Received  October 2014 Revised  March 2015 Published  August 2015

In this paper, a general fractional model is proposed. Based on the fractional model, a quasi-Newton trust region algorithm is presented for unconstrained optimization. The trust region subproblem is solved in the simplified way. We discussed the choices of the parameters in the fractional model and prove the global convergence of the proposed algorithm. Some primary test results shows the feasibility and validity of the fractional model.
Citation: Honglan Zhu, Qin Ni, Meilan Zeng. A quasi-Newton trust region method based on a new fractional model. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 237-249. doi: 10.3934/naco.2015.5.237
References:
[1]

W. C. Davidon, Conic approximations and collinear scalings for optimizers, SIAM Journal on Numerical Analysis, 17 (1980), 268-281. doi: 10.1137/0717023.

[2]

S. Di and W. Y. Sun, A trust region method for conic model to solve unconstraind optimizaions, Optimization Methods and Software, 6 (1996), 237-263. doi: 10.1080/10556789608805637.

[3]

D. M. Gay, Computing optimal locally constrained steps, SIAM Journal on Scientific and Statistical Computing, 2 (1981), 186-197. doi: 10.1137/0902016.

[4]

H. Gourgeon and J. Nocedal, A conic algorithm for optimization, SIAM Journal on Scientific and Statistical Computing, 6 (1985), 253-267. doi: 10.1137/0906019.

[5]

X. P. Lu, Q. Ni and H. Liu, A dogleg method for solving new trust region subproblems of conic model, ACTA Mathematicae Applicatae Sinica, 30 (2009), 855-871.

[6]

X. P. Lu and Q. Ni, A quasi-newton trust region method with a new conic model for the unconstrained optimization, Applied Mathematics and Computation, 204 (2008), 373-384. doi: 10.1016/j.amc.2008.06.062.

[7]

J. J. More, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Software, 7 (1981), 17-41. doi: 10.1145/355934.355936.

[8]

Q. Ni, Optimality conditions for trust-region subproblems involving a conic model, SIAM Journal on Optimization, 15 (2005), 826-837. doi: 10.1137/S1052623402418991.

[9]

Q. Ni, Optimization Method and Program Design, Science Press, Beijing, 2009.

[10]

J. M. Peng and Y. X. Yuan, Optimality conditions for the minimization of a quadratic with two quadratic constraints, SIAM Journal on Optimization, 7 (1997), 579-594. doi: 10.1137/S1052623494261520.

[11]

M. J. D. Powell, Convergence properties of a class of minimization algorithms, in Nonlinear Programming 2, (eds. O.L. Mangasarian, R.R. Meyer and S.M. Robinson), Academic Press, New York, (1975), 1-27.

[12]

M. J. D. Powell and Y. X. Yuan, A trust region algorithm for equality constrained optimization, Mathematical Programming, 49 (1990), 189-211. doi: 10.1007/BF01588787.

[13]

R. Schnabel, Conic methods for unconstrained minimization and tensor methods for nonlinear equations, In Mathematical Programming: The State of the Art, (eds. A. Bachem, M. Gr\"otschel and B. Korte), Springer-Verlag, Heidelberg, (1982), 417-438.

[14]

D. C. Sorensen, Newton's method with a model trust region modification, SIAM Journal on Numerical Analysis, 19 (1982), 409-426. doi: 10.1137/0719026.

[15]

W. Y. Sun and Y. X. Yuan, A conic trust-region method for nonlinearly constrained optimization, Annals of Operations Research, 103 (2001), 175-191. doi: 10.1023/A:1012955122229.

[16]

F. S. Wang, K. C. Zhang, C. L. Wang and L. Wang, A variant of trust-region methods for unconstrained optimization, Applied Mathematics and Computation, 203 (2008), 297-307. doi: 10.1016/j.amc.2008.04.049.

[17]

J. Y. Wang and Q. Ni, An algorithm for solving new trust region subproblem with conic model, Science in China, Series A: Mathematics, 51 (2008), 461-473. doi: 10.1007/s11425-007-0149-6.

[18]

H. P. Wu and Q. Ni, A new trust region algorithm with conic model, Numerical Mathematics: A Journal of Chinese Universities, 30 (2008), 57-67.

[19]

C. X. Xu and X. Y. Yang, Convergence of conic quasi-Newton trust region methods for unconstrained minimization, Mathematical Application, 11 (1998), 71-76.

[20]

Y. X. Yuan, A review of trust region algorithms for optimization, ICIAM, 99 (2000), 271-282.

[21]

L. W. Zhang and Q. Ni, Trust region algorithm of new conic model for nonliearly equality constrained optimization, Journal on Numerical Methods and Computer Applications, 31 (2010), 279-289.

[22]

X. Zhang, J. Wen and Q. Ni, Subspace trust-region algorithm with conic model for unconstrained optimization, Numerical Algebra, Control and Optimization, 3 (2013), 223-234. doi: 10.3934/naco.2013.3.223.

[23]

L. J. Zhao and W. Y. Sun, Nonmonotone retrospective conic trust region method for unconstrained optimization, Numerical Algebra, Control and Optimization, 3 (2013), 309-325. doi: 10.3934/naco.2013.3.309.

[24]

X. Zhao and X. Y. Wang, A nonmonotone self-adaptive search based on trust region algorithm with line the new conic model, Journal of Taiyuan University of Science and Technology, 31 (2010), 68-71.

[25]

M. F. Zhu, Y. Xue and F. S. Zhang, A quasi-Newton type trust region method based on the conic model, Numerical Mathematics A Journal of Chinese Universities, 17 (1995), 36-47.

show all references

References:
[1]

W. C. Davidon, Conic approximations and collinear scalings for optimizers, SIAM Journal on Numerical Analysis, 17 (1980), 268-281. doi: 10.1137/0717023.

[2]

S. Di and W. Y. Sun, A trust region method for conic model to solve unconstraind optimizaions, Optimization Methods and Software, 6 (1996), 237-263. doi: 10.1080/10556789608805637.

[3]

D. M. Gay, Computing optimal locally constrained steps, SIAM Journal on Scientific and Statistical Computing, 2 (1981), 186-197. doi: 10.1137/0902016.

[4]

H. Gourgeon and J. Nocedal, A conic algorithm for optimization, SIAM Journal on Scientific and Statistical Computing, 6 (1985), 253-267. doi: 10.1137/0906019.

[5]

X. P. Lu, Q. Ni and H. Liu, A dogleg method for solving new trust region subproblems of conic model, ACTA Mathematicae Applicatae Sinica, 30 (2009), 855-871.

[6]

X. P. Lu and Q. Ni, A quasi-newton trust region method with a new conic model for the unconstrained optimization, Applied Mathematics and Computation, 204 (2008), 373-384. doi: 10.1016/j.amc.2008.06.062.

[7]

J. J. More, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Software, 7 (1981), 17-41. doi: 10.1145/355934.355936.

[8]

Q. Ni, Optimality conditions for trust-region subproblems involving a conic model, SIAM Journal on Optimization, 15 (2005), 826-837. doi: 10.1137/S1052623402418991.

[9]

Q. Ni, Optimization Method and Program Design, Science Press, Beijing, 2009.

[10]

J. M. Peng and Y. X. Yuan, Optimality conditions for the minimization of a quadratic with two quadratic constraints, SIAM Journal on Optimization, 7 (1997), 579-594. doi: 10.1137/S1052623494261520.

[11]

M. J. D. Powell, Convergence properties of a class of minimization algorithms, in Nonlinear Programming 2, (eds. O.L. Mangasarian, R.R. Meyer and S.M. Robinson), Academic Press, New York, (1975), 1-27.

[12]

M. J. D. Powell and Y. X. Yuan, A trust region algorithm for equality constrained optimization, Mathematical Programming, 49 (1990), 189-211. doi: 10.1007/BF01588787.

[13]

R. Schnabel, Conic methods for unconstrained minimization and tensor methods for nonlinear equations, In Mathematical Programming: The State of the Art, (eds. A. Bachem, M. Gr\"otschel and B. Korte), Springer-Verlag, Heidelberg, (1982), 417-438.

[14]

D. C. Sorensen, Newton's method with a model trust region modification, SIAM Journal on Numerical Analysis, 19 (1982), 409-426. doi: 10.1137/0719026.

[15]

W. Y. Sun and Y. X. Yuan, A conic trust-region method for nonlinearly constrained optimization, Annals of Operations Research, 103 (2001), 175-191. doi: 10.1023/A:1012955122229.

[16]

F. S. Wang, K. C. Zhang, C. L. Wang and L. Wang, A variant of trust-region methods for unconstrained optimization, Applied Mathematics and Computation, 203 (2008), 297-307. doi: 10.1016/j.amc.2008.04.049.

[17]

J. Y. Wang and Q. Ni, An algorithm for solving new trust region subproblem with conic model, Science in China, Series A: Mathematics, 51 (2008), 461-473. doi: 10.1007/s11425-007-0149-6.

[18]

H. P. Wu and Q. Ni, A new trust region algorithm with conic model, Numerical Mathematics: A Journal of Chinese Universities, 30 (2008), 57-67.

[19]

C. X. Xu and X. Y. Yang, Convergence of conic quasi-Newton trust region methods for unconstrained minimization, Mathematical Application, 11 (1998), 71-76.

[20]

Y. X. Yuan, A review of trust region algorithms for optimization, ICIAM, 99 (2000), 271-282.

[21]

L. W. Zhang and Q. Ni, Trust region algorithm of new conic model for nonliearly equality constrained optimization, Journal on Numerical Methods and Computer Applications, 31 (2010), 279-289.

[22]

X. Zhang, J. Wen and Q. Ni, Subspace trust-region algorithm with conic model for unconstrained optimization, Numerical Algebra, Control and Optimization, 3 (2013), 223-234. doi: 10.3934/naco.2013.3.223.

[23]

L. J. Zhao and W. Y. Sun, Nonmonotone retrospective conic trust region method for unconstrained optimization, Numerical Algebra, Control and Optimization, 3 (2013), 309-325. doi: 10.3934/naco.2013.3.309.

[24]

X. Zhao and X. Y. Wang, A nonmonotone self-adaptive search based on trust region algorithm with line the new conic model, Journal of Taiyuan University of Science and Technology, 31 (2010), 68-71.

[25]

M. F. Zhu, Y. Xue and F. S. Zhang, A quasi-Newton type trust region method based on the conic model, Numerical Mathematics A Journal of Chinese Universities, 17 (1995), 36-47.

[1]

Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial and Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919

[2]

Lijuan Zhao, Wenyu Sun. Nonmonotone retrospective conic trust region method for unconstrained optimization. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 309-325. doi: 10.3934/naco.2013.3.309

[3]

Xin Zhang, Jie Wen, Qin Ni. Subspace trust-region algorithm with conic model for unconstrained optimization. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 223-234. doi: 10.3934/naco.2013.3.223

[4]

Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial and Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171

[5]

Shummin Nakayama, Yasushi Narushima, Hiroshi Yabe. Memoryless quasi-Newton methods based on spectral-scaling Broyden family for unconstrained optimization. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1773-1793. doi: 10.3934/jimo.2018122

[6]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial and Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[7]

Jirui Ma, Jinyan Fan. On convergence properties of the modified trust region method under Hölderian error bound condition. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021222

[8]

Liang Zhang, Wenyu Sun, Raimundo J. B. de Sampaio, Jinyun Yuan. A wedge trust region method with self-correcting geometry for derivative-free optimization. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 169-184. doi: 10.3934/naco.2015.5.169

[9]

Jun Takaki, Nobuo Yamashita. A derivative-free trust-region algorithm for unconstrained optimization with controlled error. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 117-145. doi: 10.3934/naco.2011.1.117

[10]

Dan Xue, Wenyu Sun, Hongjin He. A structured trust region method for nonconvex programming with separable structure. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 283-293. doi: 10.3934/naco.2013.3.283

[11]

Yuhong Dai, Nobuo Yamashita. Convergence analysis of sparse quasi-Newton updates with positive definite matrix completion for two-dimensional functions. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 61-69. doi: 10.3934/naco.2011.1.61

[12]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial and Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[13]

Basim A. Hassan. A new type of quasi-newton updating formulas based on the new quasi-newton equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 227-235. doi: 10.3934/naco.2019049

[14]

Guanghui Zhou, Qin Ni, Meilan Zeng. A scaled conjugate gradient method with moving asymptotes for unconstrained optimization problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 595-608. doi: 10.3934/jimo.2016034

[15]

Chunlin Hao, Xinwei Liu. A trust-region filter-SQP method for mathematical programs with linear complementarity constraints. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1041-1055. doi: 10.3934/jimo.2011.7.1041

[16]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial and Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[17]

Zhi-Feng Pang, Yu-Fei Yang. Semismooth Newton method for minimization of the LLT model. Inverse Problems and Imaging, 2009, 3 (4) : 677-691. doi: 10.3934/ipi.2009.3.677

[18]

Bülent Karasözen. Survey of trust-region derivative free optimization methods. Journal of Industrial and Management Optimization, 2007, 3 (2) : 321-334. doi: 10.3934/jimo.2007.3.321

[19]

He Huang, Zhen He. A global optimization method for multiple response optimization problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022016

[20]

Hong Seng Sim, Chuei Yee Chen, Wah June Leong, Jiao Li. Nonmonotone spectral gradient method based on memoryless symmetric rank-one update for large-scale unconstrained optimization. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021143

 Impact Factor: 

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]