• Previous Article
    Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol
  • NACO Home
  • This Issue
  • Next Article
    Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control
2015, 5(4): 381-392. doi: 10.3934/naco.2015.5.381

A stochastic model for microbial fermentation process under Gaussian white noise environment

1. 

School of Science, Dalian Jiaotong University,Dalian, MO 116028, China, China

2. 

School of Mathematical Sciences, Dalian University of Technology, Dalian, MO 116023, China

3. 

Department of Mathematics, The George Washington University,Washington DC 20052, United States

4. 

Department of Mathematics, Loyola Marymount University, Los Angeles CA 90045, United States

Received  March 2015 Revised  October 2015 Published  October 2015

In this paper, we propose a stochastic model for the microbial fermentation process under the framework of white noise analysis, where Gaussian white noises are used to model the environmental noises and the specific growth rate is driven by Gaussian white noises. In order to keep the regularity of the terminal time, the adjustment factors are added in the volatility coefficients of the stochastic model. Then we prove some fundamental properties of the stochastic model: the regularity of the terminal time, the existence and uniqueness of a solution and the continuous dependence of the solution on the initial values.
Citation: Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381
References:
[1]

I. Albert, R. Pouillot and J.-B. Denis, Stochastically modeling listeria monocytogenes growth in farm tank milk, Risk Analysis, 25 (2005), 1171-1185.

[2]

H. Biebl, K. Menzel, A. P. Zeng and W. Deckwer, Microbial production of 1,3-propanediol, Applied Microbiology and Biotechnology, 52 (1999), 297-298.

[3]

R. Bona and A. Moser, Modeling of l-glutamic acid production with Corynebacterium glutamicum under biotin limitation, Bioprocess Engineering, 17 (1997), 139-142.

[4]

C. Hartmann and A. Delgado, Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure, Journal of Biomechanics, 37 (2004), 977-987.

[5]

H. J. Henzler, Particle stress in bioreactors, Advances in Biochemical Engineering, 67 (2000), 35-82.

[6]

H. Holden, B. Øksendal, J. Ubøe and T. S. Zhang, Stochastic Partial Differential Equations-A Modeling, White Noise Functional Approach, 2nd edition, Springer-Verlag, New York, 2010. doi: 10.1007/978-0-387-89488-1.

[7]

A. Kasperski, Modelling of cells bioenergetics, Acta Biotheoretica, 56 (2008), 233-247.

[8]

A. Kasperski and T. Miskiewicz, Optimization of pulsed feeding in a Baker's yeast process with dissolved oxygen concentration as a control parameter, Biochemical Engineering Journal, 40 (2008), 321-327.

[9]

Z. Kutalik, M. Razaz and J. Baranyi, Connection between stochastic and deterministic modelling of microbial growth, Journal of Theoretical Biology, 232 (2005), 285-299. doi: 10.1016/j.jtbi.2004.08.013.

[10]

X. Li and X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete and Continuous Dynamical Systems, 24 (2009), 523-545. doi: 10.3934/dcds.2009.24.523.

[11]

B. Ø ksendal and A. Sulem, Applied Stochastic Control of Jump Diffusion, 2nd edition, Springer, Berlin, 2007. doi: 10.1007/978-3-540-69826-5.

[12]

B. Ø ksendal, Stochastic Differential Equations, 6nd edition, Springer, Berlin, Heidelberg, New York, 2005.

[13]

H. J. Rehm and G. Reed, Microbial Fundamentals, Verlag Chemie, Weinheim, 1981.

[14]

K. Schügerl, Bioreaction Engineering: Reactions Involving Microorganisms and Cells: Fundamentals, Thermodynamics, Formal Kinetics, Idealized Reactor Types and Operation, Wiley, Chichester, 1987.

[15]

T. K. Soboleva, A. E. Filippov, A. B. Pleasants, R. J. Jones and G. A. Dykes, Stochastic modelling of the growth of a microbial population under changing temperature regimes, International Journal of Food Microbiology, 64 (2001), 317-323.

[16]

S. Suresh, N. S. Khan, V. C. Srivastava and I. M. Mishra, Kinetic modeling and sensitivity analysis of kinetic parameters for $l$-glutamic acid production using Corynebacterium glutamicum, International Journal of Chemical Reactor Engineering, 7 (2009), Article A89.

[17]

Y. Tian, A. Kasperski, K. Sun and Lansun Chen, Theoretical approach to modelling and analysis of the bioprocess with product inhibition and impulse effect, BioSystems, 104 (2011), 77-86.

[18]

M. K. Toma, M. P. Rukilisha, J. J. Vanags, M. O. Zeltina, M. P. Leite, N. I. Galinina, U. E. Viesturs and R. P. Tengerdy, Inhibition of microbial growth and metabolism by excess turbulence, Biotechnology and Bioengineering, 38 (2000), 552-556.

[19]

L. Wang, Z. Xiu and E. Feng, A stochastic model of microbial bioconversion process in batch culture, International journal of Chemical reactor engineering, 9 (2011), Article A82.

[20]

L. Wang, Z. Xiu and E. Feng, Modeling nonlinear stochastic kinetic system and stochastic optimal control of microbial bioconversion process in batch culture, Nonlinear Analysis: Modelling and Control, 18 (2013), 99-111.

show all references

References:
[1]

I. Albert, R. Pouillot and J.-B. Denis, Stochastically modeling listeria monocytogenes growth in farm tank milk, Risk Analysis, 25 (2005), 1171-1185.

[2]

H. Biebl, K. Menzel, A. P. Zeng and W. Deckwer, Microbial production of 1,3-propanediol, Applied Microbiology and Biotechnology, 52 (1999), 297-298.

[3]

R. Bona and A. Moser, Modeling of l-glutamic acid production with Corynebacterium glutamicum under biotin limitation, Bioprocess Engineering, 17 (1997), 139-142.

[4]

C. Hartmann and A. Delgado, Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure, Journal of Biomechanics, 37 (2004), 977-987.

[5]

H. J. Henzler, Particle stress in bioreactors, Advances in Biochemical Engineering, 67 (2000), 35-82.

[6]

H. Holden, B. Øksendal, J. Ubøe and T. S. Zhang, Stochastic Partial Differential Equations-A Modeling, White Noise Functional Approach, 2nd edition, Springer-Verlag, New York, 2010. doi: 10.1007/978-0-387-89488-1.

[7]

A. Kasperski, Modelling of cells bioenergetics, Acta Biotheoretica, 56 (2008), 233-247.

[8]

A. Kasperski and T. Miskiewicz, Optimization of pulsed feeding in a Baker's yeast process with dissolved oxygen concentration as a control parameter, Biochemical Engineering Journal, 40 (2008), 321-327.

[9]

Z. Kutalik, M. Razaz and J. Baranyi, Connection between stochastic and deterministic modelling of microbial growth, Journal of Theoretical Biology, 232 (2005), 285-299. doi: 10.1016/j.jtbi.2004.08.013.

[10]

X. Li and X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete and Continuous Dynamical Systems, 24 (2009), 523-545. doi: 10.3934/dcds.2009.24.523.

[11]

B. Ø ksendal and A. Sulem, Applied Stochastic Control of Jump Diffusion, 2nd edition, Springer, Berlin, 2007. doi: 10.1007/978-3-540-69826-5.

[12]

B. Ø ksendal, Stochastic Differential Equations, 6nd edition, Springer, Berlin, Heidelberg, New York, 2005.

[13]

H. J. Rehm and G. Reed, Microbial Fundamentals, Verlag Chemie, Weinheim, 1981.

[14]

K. Schügerl, Bioreaction Engineering: Reactions Involving Microorganisms and Cells: Fundamentals, Thermodynamics, Formal Kinetics, Idealized Reactor Types and Operation, Wiley, Chichester, 1987.

[15]

T. K. Soboleva, A. E. Filippov, A. B. Pleasants, R. J. Jones and G. A. Dykes, Stochastic modelling of the growth of a microbial population under changing temperature regimes, International Journal of Food Microbiology, 64 (2001), 317-323.

[16]

S. Suresh, N. S. Khan, V. C. Srivastava and I. M. Mishra, Kinetic modeling and sensitivity analysis of kinetic parameters for $l$-glutamic acid production using Corynebacterium glutamicum, International Journal of Chemical Reactor Engineering, 7 (2009), Article A89.

[17]

Y. Tian, A. Kasperski, K. Sun and Lansun Chen, Theoretical approach to modelling and analysis of the bioprocess with product inhibition and impulse effect, BioSystems, 104 (2011), 77-86.

[18]

M. K. Toma, M. P. Rukilisha, J. J. Vanags, M. O. Zeltina, M. P. Leite, N. I. Galinina, U. E. Viesturs and R. P. Tengerdy, Inhibition of microbial growth and metabolism by excess turbulence, Biotechnology and Bioengineering, 38 (2000), 552-556.

[19]

L. Wang, Z. Xiu and E. Feng, A stochastic model of microbial bioconversion process in batch culture, International journal of Chemical reactor engineering, 9 (2011), Article A82.

[20]

L. Wang, Z. Xiu and E. Feng, Modeling nonlinear stochastic kinetic system and stochastic optimal control of microbial bioconversion process in batch culture, Nonlinear Analysis: Modelling and Control, 18 (2013), 99-111.

[1]

Boris Anicet Guimfack, Conrad Bertrand Tabi, Alidou Mohamadou, Timoléon Crépin Kofané. Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2229-2243. doi: 10.3934/dcdss.2020397

[2]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[3]

Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056

[4]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[5]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077

[6]

Xiang Lv. Existence of unstable stationary solutions for nonlinear stochastic differential equations with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2313-2323. doi: 10.3934/dcdsb.2021133

[7]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1709-1721. doi: 10.3934/jimo.2021040

[8]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[9]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[10]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021318

[11]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[12]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[13]

Guanggan Chen, Qin Li, Yunyun Wei. Approximate dynamics of a class of stochastic wave equations with white noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 73-101. doi: 10.3934/dcdsb.2021033

[14]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[15]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure and Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[16]

Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control and Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032

[17]

Tran Ngoc Thach, Devendra Kumar, Nguyen Hoang Luc, Nguyen Huy Tuan. Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 481-499. doi: 10.3934/dcdss.2021118

[18]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317

[20]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

 Impact Factor: 

Metrics

  • PDF downloads (177)
  • HTML views (0)
  • Cited by (3)

[Back to Top]