2016, 6(1): 1-20. doi: 10.3934/naco.2016.6.1

Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control

1. 

Max Planck Institute for Dynamics of Complex Technical Systems, Computational Methods in Systems and Control Theory, Magdeburg, Germany, Germany, Germany

Received  November 2014 Revised  January 2016 Published  January 2016

Stabilizing a flow around an unstable equilibrium is a typical problem in flow control. Model-based designed of modern controllers like LQR/LQG or $H_\infty$ compensators is often limited by the large-scale of the discretized flow models. Therefore, model reduction is usually needed before designing such a controller. Here we suggest an approach based on applying balanced truncation for unstable systems to the linearized flow equations usually used for compensator design. For this purpose, we modify the ADI iteration for Lyapunov equations to deal with the index-2 structure of the underlying descriptor system efficiently in an implicit way. The resulting algorithm is tested for model reduction and control design of a linearized Navier-Stokes system describing von Kármán vortex shedding.
Citation: Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1
References:
[1]

in Proc. European Control Conf. ECC 2014, Strasbourg, IEEE, 2014, 1075-1079. Google Scholar

[2]

Numer. Lin. Alg. Appl., 19 (2012), 700-727. doi: 10.1002/nla.799.  Google Scholar

[3]

SIAM Publications, Philadelphia, PA, 2005. doi: 10.1137/1.9780898718713.  Google Scholar

[4]

Systems Control Lett., 46 (2002), 323-342. doi: 10.1016/S0167-6911(02)00147-0.  Google Scholar

[5]

SIAM, Philadelphia, PA, 1998. doi: 10.1137/1.9781611971392.  Google Scholar

[6]

SIAM J. Sci. Comput., 37 (2015), A832-A858. doi: 10.1137/140980016.  Google Scholar

[7]

Numer. Algorithms, 46 (2007), 351-368. doi: 10.1007/s11075-007-9143-x.  Google Scholar

[8]

Systems Control Lett., 67 (2014), 55-64. doi: 10.1016/j.sysconle.2014.02.005.  Google Scholar

[9]

Numer. Algorithms, 62 (2013), 225-251. doi: 10.1007/s11075-012-9569-7.  Google Scholar

[10]

Math. Comput. Model. Dyn. Syst., 19 (2013), 593-615. doi: 10.1080/13873954.2013.794363.  Google Scholar

[11]

Electron. Trans. Numer. Anal., 43 (2014), 142-162.  Google Scholar

[12]

Numer. Lin. Alg. Appl., 15 (2008), 755-777. doi: 10.1002/nla.622.  Google Scholar

[13]

Springer-Verlag, Berlin/Heidelberg, Germany, 2005. doi: 10.1007/3-540-27909-1.  Google Scholar

[14]

SIAM J. Numer. Anal, 52 (2014), 581-600. doi: 10.1137/130923993.  Google Scholar

[15]

SIAM J. Matrix Anal. Appl., 15 (1994), 1310-1318. doi: 10.1137/S0895479892233230.  Google Scholar

[16]

Elsevier Academic Press, 2004.  Google Scholar

[17]

European Consortium for Mathematics in Industry, B. G. Teubner GmbH, Stuttgart, 1998. doi: 10.1007/978-3-663-09828-7.  Google Scholar

[18]

Internat. J. Control, 39 (1984), 1115-1193. doi: 10.1080/00207178408933239.  Google Scholar

[19]

Johns Hopkins University Press, Baltimore, 1983.  Google Scholar

[20]

SIAM J. Matrix Anal. Appl., 29 (2007), 870-894. doi: 10.1137/040618102.  Google Scholar

[21]

SIAM J. Sci. Comput., 35 (2013), B1010-B1033. doi: 10.1137/130906635.  Google Scholar

[22]

SIAM J. Sci. Comput., 30 (2008), 1038-1063. doi: 10.1137/070681910.  Google Scholar

[23]

in Finite Element Methods in Flow Problems (eds. J. T. Oden, R. H. Gallagher, C. Taylor and O. C. Zienkiewicz), University of Alabama in Huntsville Press, 1974, 121-132. Google Scholar

[24]

Textbooks in Mathematics, EMS Publishing House, Zürich, Switzerland, 2006. doi: 10.4171/017.  Google Scholar

[25]

SIAM J. Matrix Anal. Appl., 24 (2002), 260-280. doi: 10.1137/S0895479801384937.  Google Scholar

[26]

SIAM J. Sci. Comput., 21 (2000), 1401-1418. doi: 10.1137/S1064827598347666.  Google Scholar

[27]

Manchester University Press, Manchester, UK, 1992.  Google Scholar

[28]

Springer-Verlag, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-78841-6.  Google Scholar

[29]

SIAM J. Sci. Comput., 29 (2007), 1268-1288. doi: 10.1137/06066120X.  Google Scholar

[30]

2nd edition, Springer-Verlag, New York, NY, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[31]

Linear Algebra Appl., 415 (2006), 262-289. doi: 10.1016/j.laa.2004.01.015.  Google Scholar

[32]

Math. Control Signals Systems, 16 (2004), 297-319. doi: 10.1007/s00498-004-0141-4.  Google Scholar

[33]

Internat. J. Control, 46 (1987), 1319-1330. doi: 10.1080/00207178708933971.  Google Scholar

[34]

SIAM J. Matrix Anal. Appl., 31 (2010), 2553-2579. doi: 10.1137/090764566.  Google Scholar

[35]

arXiv e-prints 1312.1142v1, Cornell University, 2013, http://arxiv.org/abs/1312.1142, Math. NA. Google Scholar

[36]

Internat. J. Robust and Nonlinear Cont., 9 (1999), 183-198. doi: 10.1002/(SICI)1099-1239(199903)9:3<121::AID-RNC395>3.0.CO;2-1.  Google Scholar

show all references

References:
[1]

in Proc. European Control Conf. ECC 2014, Strasbourg, IEEE, 2014, 1075-1079. Google Scholar

[2]

Numer. Lin. Alg. Appl., 19 (2012), 700-727. doi: 10.1002/nla.799.  Google Scholar

[3]

SIAM Publications, Philadelphia, PA, 2005. doi: 10.1137/1.9780898718713.  Google Scholar

[4]

Systems Control Lett., 46 (2002), 323-342. doi: 10.1016/S0167-6911(02)00147-0.  Google Scholar

[5]

SIAM, Philadelphia, PA, 1998. doi: 10.1137/1.9781611971392.  Google Scholar

[6]

SIAM J. Sci. Comput., 37 (2015), A832-A858. doi: 10.1137/140980016.  Google Scholar

[7]

Numer. Algorithms, 46 (2007), 351-368. doi: 10.1007/s11075-007-9143-x.  Google Scholar

[8]

Systems Control Lett., 67 (2014), 55-64. doi: 10.1016/j.sysconle.2014.02.005.  Google Scholar

[9]

Numer. Algorithms, 62 (2013), 225-251. doi: 10.1007/s11075-012-9569-7.  Google Scholar

[10]

Math. Comput. Model. Dyn. Syst., 19 (2013), 593-615. doi: 10.1080/13873954.2013.794363.  Google Scholar

[11]

Electron. Trans. Numer. Anal., 43 (2014), 142-162.  Google Scholar

[12]

Numer. Lin. Alg. Appl., 15 (2008), 755-777. doi: 10.1002/nla.622.  Google Scholar

[13]

Springer-Verlag, Berlin/Heidelberg, Germany, 2005. doi: 10.1007/3-540-27909-1.  Google Scholar

[14]

SIAM J. Numer. Anal, 52 (2014), 581-600. doi: 10.1137/130923993.  Google Scholar

[15]

SIAM J. Matrix Anal. Appl., 15 (1994), 1310-1318. doi: 10.1137/S0895479892233230.  Google Scholar

[16]

Elsevier Academic Press, 2004.  Google Scholar

[17]

European Consortium for Mathematics in Industry, B. G. Teubner GmbH, Stuttgart, 1998. doi: 10.1007/978-3-663-09828-7.  Google Scholar

[18]

Internat. J. Control, 39 (1984), 1115-1193. doi: 10.1080/00207178408933239.  Google Scholar

[19]

Johns Hopkins University Press, Baltimore, 1983.  Google Scholar

[20]

SIAM J. Matrix Anal. Appl., 29 (2007), 870-894. doi: 10.1137/040618102.  Google Scholar

[21]

SIAM J. Sci. Comput., 35 (2013), B1010-B1033. doi: 10.1137/130906635.  Google Scholar

[22]

SIAM J. Sci. Comput., 30 (2008), 1038-1063. doi: 10.1137/070681910.  Google Scholar

[23]

in Finite Element Methods in Flow Problems (eds. J. T. Oden, R. H. Gallagher, C. Taylor and O. C. Zienkiewicz), University of Alabama in Huntsville Press, 1974, 121-132. Google Scholar

[24]

Textbooks in Mathematics, EMS Publishing House, Zürich, Switzerland, 2006. doi: 10.4171/017.  Google Scholar

[25]

SIAM J. Matrix Anal. Appl., 24 (2002), 260-280. doi: 10.1137/S0895479801384937.  Google Scholar

[26]

SIAM J. Sci. Comput., 21 (2000), 1401-1418. doi: 10.1137/S1064827598347666.  Google Scholar

[27]

Manchester University Press, Manchester, UK, 1992.  Google Scholar

[28]

Springer-Verlag, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-78841-6.  Google Scholar

[29]

SIAM J. Sci. Comput., 29 (2007), 1268-1288. doi: 10.1137/06066120X.  Google Scholar

[30]

2nd edition, Springer-Verlag, New York, NY, 1998. doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[31]

Linear Algebra Appl., 415 (2006), 262-289. doi: 10.1016/j.laa.2004.01.015.  Google Scholar

[32]

Math. Control Signals Systems, 16 (2004), 297-319. doi: 10.1007/s00498-004-0141-4.  Google Scholar

[33]

Internat. J. Control, 46 (1987), 1319-1330. doi: 10.1080/00207178708933971.  Google Scholar

[34]

SIAM J. Matrix Anal. Appl., 31 (2010), 2553-2579. doi: 10.1137/090764566.  Google Scholar

[35]

arXiv e-prints 1312.1142v1, Cornell University, 2013, http://arxiv.org/abs/1312.1142, Math. NA. Google Scholar

[36]

Internat. J. Robust and Nonlinear Cont., 9 (1999), 183-198. doi: 10.1002/(SICI)1099-1239(199903)9:3<121::AID-RNC395>3.0.CO;2-1.  Google Scholar

[1]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[2]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[3]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[4]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[5]

Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049

[6]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[7]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[8]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[9]

Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021047

[10]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[11]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[12]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[13]

Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080

[14]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[15]

Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054

[16]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[17]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[18]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[19]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[20]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

 Impact Factor: 

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]