2016, 6(2): 127-151. doi: 10.3934/naco.2016004

Output feedback overlapping control design of interconnected systems with input saturation

1. 

Distributed Control Research Lab, Systems Engineering Department, KFUPM, P. O. Box 5067, Dhahran 31261, Saudi Arabia

Received  March 2015 Revised  April 2016 Published  June 2016

In this paper, we establish new results to the problem of output feedback control design for a class of nonlinear interconnected continuous-time systems subject to input saturation. New schemes based on overlapping design methodology are developed for both static and dynamic output feedback control structures. The theoretical developments are illustrated by numerical simulations of a linearized nuclear power plant model.
Citation: Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004
References:
[1]

M. Sc. Thesis, Hacettepe University, Ankara, Turkey, 1996. Google Scholar

[2]

Vienna, 1999, STI/DOC/010/387. Google Scholar

[3]

Int. J. Control, 61 (1995), 559-587. doi: 10.1080/00207179508921918.  Google Scholar

[4]

IEEE Trans. Control Systems Technology, 13 (2005), 663-669. Google Scholar

[5]

Int. J. Robust Nonlinear Control, 5 (1995), 375-380. doi: 10.1002/rnc.4590050502.  Google Scholar

[6]

Proc. American Control Conference, Minneapolis, USA, (2006), 5239-5245. Google Scholar

[7]

IEEE Trans. Automat. Control, 23 (1978), 405-417. Google Scholar

[8]

Int. J. Robust and Nonlinear Control, 4 (1994), 421-448. doi: 10.1002/rnc.4590040403.  Google Scholar

[9]

Birkhauser, 2001. Google Scholar

[10]

J. Optimization Theory and Applications, 34 (1981), 279-309. doi: 10.1007/BF00935477.  Google Scholar

[11]

Control-Theory and Advanced Technol., 2 (1986), 155-172. Google Scholar

[12]

IEEE Trans on Autom Control, 55 (2010), 1964-1970. doi: 10.1109/TAC.2010.2050715.  Google Scholar

[13]

Marcel Dekker, New York, 2002. Google Scholar

[14]

Ind. Eng. Chem. Res., 35 (1996), 746-757. Google Scholar

[15]

Nuclear Technology, 30 (1976), 299-314. Google Scholar

[16]

Springer-Verlag, London, U. K. 1998.  Google Scholar

[17]

IET Control Theory Appl., 4 (2010), 206-227. doi: 10.1049/iet-cta.2008.0605.  Google Scholar

[18]

J. Optimization Theory and Applications, 143 (2009), 497-518. doi: 10.1007/s10957-009-9571-y.  Google Scholar

[19]

European J. Control, 15 (2009), 624-633. doi: 10.3166/ejc.15.624-633.  Google Scholar

[20]

IEEE Tran. Automatic Control, 54 (2009), 2663-2668. doi: 10.1109/TAC.2009.2031572.  Google Scholar

[21]

CRC Press, New York, 2010. Google Scholar

[22]

Optimal Control Applications and Methods, 31 (2010), 81-92. doi: 10.1002/oca.884.  Google Scholar

[23]

Optimal Control Applications and Methods, 31 (2010), 273-287. doi: 10.1002/oca.904.  Google Scholar

[24]

Springer-Verlag, London, 2011. Google Scholar

[25]

Int. J. Innovative Computing, Information and Control, 9 (2013). Google Scholar

[26]

Proc. the 37th IEEE Conference on Decision and Control, Tampa, Florida USA, (1998), 401-406. Google Scholar

[27]

Annual Reviews in Control, 31 (2007), 27-39. Google Scholar

[28]

IEEE Trans. Automat. Control, 41 (1996), 368-378. doi: 10.1109/9.486638.  Google Scholar

[29]

IEEE Trans. Automat. Control, 42 (1997), 896-911. doi: 10.1109/9.599969.  Google Scholar

[30]

Delft Center for Systems and Control, The Netherlands, 2005. Google Scholar

[31]

Automatica, 40 (2004), 1285-1296. doi: 10.1016/j.automatica.2004.02.017.  Google Scholar

[32]

Systems and Control Letters, 58 (2009), 271-275. doi: 10.1016/j.sysconle.2008.11.003.  Google Scholar

[33]

Proc. American Control Conference, (2005), 2082-2087. Google Scholar

[34]

IEEE Trans. Autom. Control, 52 (2007), 122-128. doi: 10.1109/TAC.2006.886498.  Google Scholar

[35]

Automatica, 37 (2001), 565-572. doi: 10.1016/S0005-1098(00)00190-4.  Google Scholar

[36]

IMA Journal of Mathematical Control and Info., 24 (2007), 57-69. doi: 10.1093/imamci/dnl007.  Google Scholar

show all references

References:
[1]

M. Sc. Thesis, Hacettepe University, Ankara, Turkey, 1996. Google Scholar

[2]

Vienna, 1999, STI/DOC/010/387. Google Scholar

[3]

Int. J. Control, 61 (1995), 559-587. doi: 10.1080/00207179508921918.  Google Scholar

[4]

IEEE Trans. Control Systems Technology, 13 (2005), 663-669. Google Scholar

[5]

Int. J. Robust Nonlinear Control, 5 (1995), 375-380. doi: 10.1002/rnc.4590050502.  Google Scholar

[6]

Proc. American Control Conference, Minneapolis, USA, (2006), 5239-5245. Google Scholar

[7]

IEEE Trans. Automat. Control, 23 (1978), 405-417. Google Scholar

[8]

Int. J. Robust and Nonlinear Control, 4 (1994), 421-448. doi: 10.1002/rnc.4590040403.  Google Scholar

[9]

Birkhauser, 2001. Google Scholar

[10]

J. Optimization Theory and Applications, 34 (1981), 279-309. doi: 10.1007/BF00935477.  Google Scholar

[11]

Control-Theory and Advanced Technol., 2 (1986), 155-172. Google Scholar

[12]

IEEE Trans on Autom Control, 55 (2010), 1964-1970. doi: 10.1109/TAC.2010.2050715.  Google Scholar

[13]

Marcel Dekker, New York, 2002. Google Scholar

[14]

Ind. Eng. Chem. Res., 35 (1996), 746-757. Google Scholar

[15]

Nuclear Technology, 30 (1976), 299-314. Google Scholar

[16]

Springer-Verlag, London, U. K. 1998.  Google Scholar

[17]

IET Control Theory Appl., 4 (2010), 206-227. doi: 10.1049/iet-cta.2008.0605.  Google Scholar

[18]

J. Optimization Theory and Applications, 143 (2009), 497-518. doi: 10.1007/s10957-009-9571-y.  Google Scholar

[19]

European J. Control, 15 (2009), 624-633. doi: 10.3166/ejc.15.624-633.  Google Scholar

[20]

IEEE Tran. Automatic Control, 54 (2009), 2663-2668. doi: 10.1109/TAC.2009.2031572.  Google Scholar

[21]

CRC Press, New York, 2010. Google Scholar

[22]

Optimal Control Applications and Methods, 31 (2010), 81-92. doi: 10.1002/oca.884.  Google Scholar

[23]

Optimal Control Applications and Methods, 31 (2010), 273-287. doi: 10.1002/oca.904.  Google Scholar

[24]

Springer-Verlag, London, 2011. Google Scholar

[25]

Int. J. Innovative Computing, Information and Control, 9 (2013). Google Scholar

[26]

Proc. the 37th IEEE Conference on Decision and Control, Tampa, Florida USA, (1998), 401-406. Google Scholar

[27]

Annual Reviews in Control, 31 (2007), 27-39. Google Scholar

[28]

IEEE Trans. Automat. Control, 41 (1996), 368-378. doi: 10.1109/9.486638.  Google Scholar

[29]

IEEE Trans. Automat. Control, 42 (1997), 896-911. doi: 10.1109/9.599969.  Google Scholar

[30]

Delft Center for Systems and Control, The Netherlands, 2005. Google Scholar

[31]

Automatica, 40 (2004), 1285-1296. doi: 10.1016/j.automatica.2004.02.017.  Google Scholar

[32]

Systems and Control Letters, 58 (2009), 271-275. doi: 10.1016/j.sysconle.2008.11.003.  Google Scholar

[33]

Proc. American Control Conference, (2005), 2082-2087. Google Scholar

[34]

IEEE Trans. Autom. Control, 52 (2007), 122-128. doi: 10.1109/TAC.2006.886498.  Google Scholar

[35]

Automatica, 37 (2001), 565-572. doi: 10.1016/S0005-1098(00)00190-4.  Google Scholar

[36]

IMA Journal of Mathematical Control and Info., 24 (2007), 57-69. doi: 10.1093/imamci/dnl007.  Google Scholar

[1]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[2]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[3]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[4]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[5]

Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021126

[6]

Hui Xu, Guangbin Cai, Xiaogang Yang, Erliang Yao, Xiaofeng Li. Stereo visual odometry based on dynamic and static features division. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021059

[7]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[8]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[9]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[10]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

[11]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[12]

Patrick Beißner, Emanuela Rosazza Gianin. The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 23-52. doi: 10.3934/puqr.2021002

[13]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[14]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[15]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[16]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[17]

Chris Guiver, Nathan Poppelreiter, Richard Rebarber, Brigitte Tenhumberg, Stuart Townley. Dynamic observers for unknown populations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3279-3302. doi: 10.3934/dcdsb.2020232

[18]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[19]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[20]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

 Impact Factor: 

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]