2016, 6(2): 127-151. doi: 10.3934/naco.2016004

Output feedback overlapping control design of interconnected systems with input saturation

1. 

Distributed Control Research Lab, Systems Engineering Department, KFUPM, P. O. Box 5067, Dhahran 31261, Saudi Arabia

Received  March 2015 Revised  April 2016 Published  June 2016

In this paper, we establish new results to the problem of output feedback control design for a class of nonlinear interconnected continuous-time systems subject to input saturation. New schemes based on overlapping design methodology are developed for both static and dynamic output feedback control structures. The theoretical developments are illustrated by numerical simulations of a linearized nuclear power plant model.
Citation: Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004
References:
[1]

H. Akkurt, Development of a Control Model for a PWR, M. Sc. Thesis, Hacettepe University, Ankara, Turkey, 1996.

[2]

Atomic Energy Agency, Modern Instrumentation and Control for Nuclear Power Plants: A Guidebook, Vienna, 1999, STI/DOC/010/387.

[3]

L. Backule and J. Rodellar, Decentralized control and overlapping decomposition of mechanical systems. part 1: System decomposition. part 2: Decentralized stabilization, Int. J. Control, 61 (1995), 559-587. doi: 10.1080/00207179508921918.

[4]

L. Backule, F. Paulet-Crainiceanu, J. Rodellar and J. M. Rossell, Overlapping reliable control for a cable-stayed bridge benchmark, IEEE Trans. Control Systems Technology, 13 (2005), 663-669.

[5]

D. S. Bernstein and A. N. Michel, A Chronological bibliography on saturating actuators, Int. J. Robust Nonlinear Control, 5 (1995), 375-380. doi: 10.1002/rnc.4590050502.

[6]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Control of saturated linear plants via output feedback containing an internal dead zone loop, Proc. American Control Conference, Minneapolis, USA, (2006), 5239-5245.

[7]

B. Frogner and H. S. Rao, Control of nuclear power plants, IEEE Trans. Automat. Control, 23 (1978), 405-417.

[8]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to H control, Int. J. Robust and Nonlinear Control, 4 (1994), 421-448. doi: 10.1002/rnc.4590040403.

[9]

T. Hua and Z. Lin, Control Systems with Actuator Saturation: Analysis and Design, Birkhauser, 2001.

[10]

M. Ikeda, D. D. Siljak and D. E. White, Decentralized control with overlapping information set, J. Optimization Theory and Applications, 34 (1981), 279-309. doi: 10.1007/BF00935477.

[11]

M. Ikeda and D. D. Siljak, Overlapping decentralized control with input, state and output inclusion, Control-Theory and Advanced Technol., 2 (1986), 155-172.

[12]

K. Kalsi, J. Lian and S. H. Zak, Decentralized dynamic output feedback control of Nonlinear interconnected systems, IEEE Trans on Autom Control, 55 (2010), 1964-1970. doi: 10.1109/TAC.2010.2050715.

[13]

V. Kapilla and K. Grigoriadis, Actuator Saturation Control, Marcel Dekker, New York, 2002.

[14]

T. A. Kendi and F. J. Doyle, Nonlinear control of a fluidized bed reactor using approximate feedback linearization, Ind. Eng. Chem. Res., 35 (1996), 746-757.

[15]

T. W. Kerlin, E. M. Katz and J. G. Thakkar, Theoretical and experimental dynamic analysis of the H. B. Robinson nuclear plant, Nuclear Technology, 30 (1976), 299-314.

[16]

Z. Lin, Low Gain Feedback, Springer-Verlag, London, U. K. 1998.

[17]

L. Lu, Z. Lin and A. Bateman, Decentralized state feedback design for large-scale linear systems subject to input saturation, IET Control Theory Appl., 4 (2010), 206-227. doi: 10.1049/iet-cta.2008.0605.

[18]

M. S. Mahmoud, Decentralized reliable control of interconnected systems with time-varying delays, J. Optimization Theory and Applications, 143 (2009), 497-518. doi: 10.1007/s10957-009-9571-y.

[19]

M. S. Mahmoud and N. B. Almutairi, Decentralized stabilization of interconnected systems with time-varying delays, European J. Control, 15 (2009), 624-633. doi: 10.3166/ejc.15.624-633.

[20]

M. S. Mahmoud, Decentralized stabilization of interconnected nonlinear systems with time-varying delays, IEEE Tran. Automatic Control, 54 (2009), 2663-2668. doi: 10.1109/TAC.2009.2031572.

[21]

M. S. Mahmoud, Decentralized Control and Filtering in Interconnected Dynamical Systems, CRC Press, New York, 2010.

[22]

M. S. Mahmoud, Improved stability and stabilization approach to linear interconnected time-delay systems, Optimal Control Applications and Methods, 31 (2010), 81-92. doi: 10.1002/oca.884.

[23]

M. S. Mahmoud and S. Elferik, New stability and stabilization methods for nonlinear systems with time-varying delays, Optimal Control Applications and Methods, 31 (2010), 273-287. doi: 10.1002/oca.904.

[24]

M. S. Mahmoud, Decentralized Control with Design Constraints, Springer-Verlag, London, 2011.

[25]

I. Ngamroo, Overlapping decompositions-based robust decentralized TABU search-optimized fixed structure H frequency stabilizer design in interconnected power systems, Int. J. Innovative Computing, Information and Control, 9 (2013).

[26]

C. Pittet, S. Tarbouriech and C. Burgat, Output feedback synthesis via the circle criterion for linear systems subject to saturating inputs, Proc. the 37th IEEE Conference on Decision and Control, Tampa, Florida USA, (1998), 401-406.

[27]

I. Postlethwaite, M. Turner and G. Herman, Robust control applications, Annual Reviews in Control, 31 (2007), 27-39.

[28]

A. Saberi, Z. Lin, and A. R. Teel, Control of linear systems with saturating actuators, IEEE Trans. Automat. Control, 41 (1996), 368-378. doi: 10.1109/9.486638.

[29]

C. Scherer, P. Gahinet and M. Chilali, Multiobjective output-feedback control via LMI optimization, IEEE Trans. Automat. Control, 42 (1997), 896-911. doi: 10.1109/9.599969.

[30]

C. Scherer and S. Weiland, Linear Matrix Inequalities in Control, Delft Center for Systems and Control, The Netherlands, 2005.

[31]

D. M. Stankovic, G. Inalhan, R. Teo and C. J. Tomlin, Decentralized overlapping control of a formation of unmanned aerial vehicles, Automatica, 40 (2004), 1285-1296. doi: 10.1016/j.automatica.2004.02.017.

[32]

S. S. Stankovic and D. D. Siljak, Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback, Systems and Control Letters, 58 (2009), 271-275. doi: 10.1016/j.sysconle.2008.11.003.

[33]

A. A. Stoorvogel, J. Minteer and C. Deliu, Decentralized control with input saturation: a first step towards design, Proc. American Control Conference, (2005), 2082-2087.

[34]

F. Wu, Z. Lin and Q. Zheng, Output feedback stabilization of linear systems with actuator saturation, IEEE Trans. Autom. Control, 52 (2007), 122-128. doi: 10.1109/TAC.2006.886498.

[35]

G. Zhai, M. Ikeda and Y. Fujikasi, Decentralized H controller design: a matrix inequality approach using a homotopy method, Automatica, 37 (2001), 565-572. doi: 10.1016/S0005-1098(00)00190-4.

[36]

Y. Zhu and P. R. Pragilla, Decentralized output feedback control of a class of large scale systems, IMA Journal of Mathematical Control and Info., 24 (2007), 57-69. doi: 10.1093/imamci/dnl007.

show all references

References:
[1]

H. Akkurt, Development of a Control Model for a PWR, M. Sc. Thesis, Hacettepe University, Ankara, Turkey, 1996.

[2]

Atomic Energy Agency, Modern Instrumentation and Control for Nuclear Power Plants: A Guidebook, Vienna, 1999, STI/DOC/010/387.

[3]

L. Backule and J. Rodellar, Decentralized control and overlapping decomposition of mechanical systems. part 1: System decomposition. part 2: Decentralized stabilization, Int. J. Control, 61 (1995), 559-587. doi: 10.1080/00207179508921918.

[4]

L. Backule, F. Paulet-Crainiceanu, J. Rodellar and J. M. Rossell, Overlapping reliable control for a cable-stayed bridge benchmark, IEEE Trans. Control Systems Technology, 13 (2005), 663-669.

[5]

D. S. Bernstein and A. N. Michel, A Chronological bibliography on saturating actuators, Int. J. Robust Nonlinear Control, 5 (1995), 375-380. doi: 10.1002/rnc.4590050502.

[6]

D. Dai, T. Hu, A. R. Teel and L. Zaccarian, Control of saturated linear plants via output feedback containing an internal dead zone loop, Proc. American Control Conference, Minneapolis, USA, (2006), 5239-5245.

[7]

B. Frogner and H. S. Rao, Control of nuclear power plants, IEEE Trans. Automat. Control, 23 (1978), 405-417.

[8]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to H control, Int. J. Robust and Nonlinear Control, 4 (1994), 421-448. doi: 10.1002/rnc.4590040403.

[9]

T. Hua and Z. Lin, Control Systems with Actuator Saturation: Analysis and Design, Birkhauser, 2001.

[10]

M. Ikeda, D. D. Siljak and D. E. White, Decentralized control with overlapping information set, J. Optimization Theory and Applications, 34 (1981), 279-309. doi: 10.1007/BF00935477.

[11]

M. Ikeda and D. D. Siljak, Overlapping decentralized control with input, state and output inclusion, Control-Theory and Advanced Technol., 2 (1986), 155-172.

[12]

K. Kalsi, J. Lian and S. H. Zak, Decentralized dynamic output feedback control of Nonlinear interconnected systems, IEEE Trans on Autom Control, 55 (2010), 1964-1970. doi: 10.1109/TAC.2010.2050715.

[13]

V. Kapilla and K. Grigoriadis, Actuator Saturation Control, Marcel Dekker, New York, 2002.

[14]

T. A. Kendi and F. J. Doyle, Nonlinear control of a fluidized bed reactor using approximate feedback linearization, Ind. Eng. Chem. Res., 35 (1996), 746-757.

[15]

T. W. Kerlin, E. M. Katz and J. G. Thakkar, Theoretical and experimental dynamic analysis of the H. B. Robinson nuclear plant, Nuclear Technology, 30 (1976), 299-314.

[16]

Z. Lin, Low Gain Feedback, Springer-Verlag, London, U. K. 1998.

[17]

L. Lu, Z. Lin and A. Bateman, Decentralized state feedback design for large-scale linear systems subject to input saturation, IET Control Theory Appl., 4 (2010), 206-227. doi: 10.1049/iet-cta.2008.0605.

[18]

M. S. Mahmoud, Decentralized reliable control of interconnected systems with time-varying delays, J. Optimization Theory and Applications, 143 (2009), 497-518. doi: 10.1007/s10957-009-9571-y.

[19]

M. S. Mahmoud and N. B. Almutairi, Decentralized stabilization of interconnected systems with time-varying delays, European J. Control, 15 (2009), 624-633. doi: 10.3166/ejc.15.624-633.

[20]

M. S. Mahmoud, Decentralized stabilization of interconnected nonlinear systems with time-varying delays, IEEE Tran. Automatic Control, 54 (2009), 2663-2668. doi: 10.1109/TAC.2009.2031572.

[21]

M. S. Mahmoud, Decentralized Control and Filtering in Interconnected Dynamical Systems, CRC Press, New York, 2010.

[22]

M. S. Mahmoud, Improved stability and stabilization approach to linear interconnected time-delay systems, Optimal Control Applications and Methods, 31 (2010), 81-92. doi: 10.1002/oca.884.

[23]

M. S. Mahmoud and S. Elferik, New stability and stabilization methods for nonlinear systems with time-varying delays, Optimal Control Applications and Methods, 31 (2010), 273-287. doi: 10.1002/oca.904.

[24]

M. S. Mahmoud, Decentralized Control with Design Constraints, Springer-Verlag, London, 2011.

[25]

I. Ngamroo, Overlapping decompositions-based robust decentralized TABU search-optimized fixed structure H frequency stabilizer design in interconnected power systems, Int. J. Innovative Computing, Information and Control, 9 (2013).

[26]

C. Pittet, S. Tarbouriech and C. Burgat, Output feedback synthesis via the circle criterion for linear systems subject to saturating inputs, Proc. the 37th IEEE Conference on Decision and Control, Tampa, Florida USA, (1998), 401-406.

[27]

I. Postlethwaite, M. Turner and G. Herman, Robust control applications, Annual Reviews in Control, 31 (2007), 27-39.

[28]

A. Saberi, Z. Lin, and A. R. Teel, Control of linear systems with saturating actuators, IEEE Trans. Automat. Control, 41 (1996), 368-378. doi: 10.1109/9.486638.

[29]

C. Scherer, P. Gahinet and M. Chilali, Multiobjective output-feedback control via LMI optimization, IEEE Trans. Automat. Control, 42 (1997), 896-911. doi: 10.1109/9.599969.

[30]

C. Scherer and S. Weiland, Linear Matrix Inequalities in Control, Delft Center for Systems and Control, The Netherlands, 2005.

[31]

D. M. Stankovic, G. Inalhan, R. Teo and C. J. Tomlin, Decentralized overlapping control of a formation of unmanned aerial vehicles, Automatica, 40 (2004), 1285-1296. doi: 10.1016/j.automatica.2004.02.017.

[32]

S. S. Stankovic and D. D. Siljak, Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback, Systems and Control Letters, 58 (2009), 271-275. doi: 10.1016/j.sysconle.2008.11.003.

[33]

A. A. Stoorvogel, J. Minteer and C. Deliu, Decentralized control with input saturation: a first step towards design, Proc. American Control Conference, (2005), 2082-2087.

[34]

F. Wu, Z. Lin and Q. Zheng, Output feedback stabilization of linear systems with actuator saturation, IEEE Trans. Autom. Control, 52 (2007), 122-128. doi: 10.1109/TAC.2006.886498.

[35]

G. Zhai, M. Ikeda and Y. Fujikasi, Decentralized H controller design: a matrix inequality approach using a homotopy method, Automatica, 37 (2001), 565-572. doi: 10.1016/S0005-1098(00)00190-4.

[36]

Y. Zhu and P. R. Pragilla, Decentralized output feedback control of a class of large scale systems, IMA Journal of Mathematical Control and Info., 24 (2007), 57-69. doi: 10.1093/imamci/dnl007.

[1]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105

[2]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control and Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017

[3]

Alexei Pokrovskii, Dmitrii Rachinskii. Effect of positive feedback on Devil's staircase input-output relationship. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1095-1112. doi: 10.3934/dcdss.2013.6.1095

[4]

Gonzalo Robledo. Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences & Engineering, 2009, 6 (3) : 629-647. doi: 10.3934/mbe.2009.6.629

[5]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[6]

Ruth F. Curtain, George Weiss. Strong stabilization of (almost) impedance passive systems by static output feedback. Mathematical Control and Related Fields, 2019, 9 (4) : 643-671. doi: 10.3934/mcrf.2019045

[7]

Ahmadreza Argha, Steven W. Su, Lin Ye, Branko G. Celler. Optimal sparse output feedback for networked systems with parametric uncertainties. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 283-295. doi: 10.3934/naco.2019019

[8]

Jian Chen, Tao Zhang, Ziye Zhang, Chong Lin, Bing Chen. Stability and output feedback control for singular Markovian jump delayed systems. Mathematical Control and Related Fields, 2018, 8 (2) : 475-490. doi: 10.3934/mcrf.2018019

[9]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375

[10]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations and Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

[11]

A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1213-1231. doi: 10.3934/dcdss.2020376

[12]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192

[13]

M. H. Shavakh, B. Bidabad. Time-optimal of fixed wing UAV aircraft with input and output constraints. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021023

[14]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[15]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control and Related Fields, 2022, 12 (2) : 405-420. doi: 10.3934/mcrf.2021027

[16]

Qian Zhang, Huaicheng Yan, Jun Cheng, Xisheng Zhan, Kaibo Shi. Fault detection filtering for continuous-time singular systems under a dynamic event-triggered mechanism. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022023

[17]

Junlin Xiong, Wenjie Liu. $ H_{\infty} $ observer-based control for large-scale systems with sparse observer communication network. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 331-343. doi: 10.3934/naco.2020005

[18]

Xin Meng, Cunchen Gao, Baoping Jiang, Hamid Reza Karimi. Observer-based SMC for stochastic systems with disturbance driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022027

[19]

Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control and Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004

[20]

Andrey Olypher, Jean Vaillant. On the properties of input-to-output transformations in neuronal networks. Mathematical Biosciences & Engineering, 2016, 13 (3) : 579-596. doi: 10.3934/mbe.2016009

 Impact Factor: 

Metrics

  • PDF downloads (162)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]