-
Previous Article
Development of concurrent structural decentralised discrete event system using bisimulation concept
- NACO Home
- This Issue
-
Next Article
Robust and flexible landmarks detection for uncontrolled frontal faces in the wild
A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method
1. | Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845 |
2. | School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 |
References:
[1] |
S. J. Benson, Y. Ye and X. Zhang, Solving large-scale sparese semidefinite programs for combinational optimization, SIAM J. Optim., 10 (2000), 443-461.
doi: 10.1137/S1052623497328008. |
[2] |
S. Boyd and L. Vandenberghe, Covex Optimization, Cambrige, UK: Cambrige University Press, 2004.
doi: 10.1017/CBO9780511804441. |
[3] |
G. Caire and S. Shamai (Shitz), On the achievable throughput of multiatenna Gaussian broadcast channel, IEEE Trans. Inf. Theory., 49 (2003), 1691-1706.
doi: 10.1109/TIT.2003.813523. |
[4] |
H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size, Signal Process., 106 (2015), 10-14. |
[5] |
K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints, IEEE International Symposium on Information Theory, Nice, France, (2007), 101-105. |
[6] |
S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric, IEEE Trans. Wireless Commun., 12 (2013), 228-236. |
[7] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer esign with signed Power-of-Two coefficients, Journal of Industrial and Management Optimization, 12 (2016), 625-636. |
[8] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198. |
[9] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas, J. Glob. Optim., 62 (2015), 877-886.
doi: 10.1007/s10898-014-0237-4. |
[10] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints, Optim. Lett., 8 (2014), 1829-1843.
doi: 10.1007/s11590-013-0673-y. |
[11] |
B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process., 63 (2015), 4179-4190.
doi: 10.1109/TSP.2015.2437846. |
[12] |
H. Suzuki, D. Robertson, N. L. Ratnayake and K. Ziri-Castro, Prediction and measurement of multiuser MIMO-OFDM channel in rural Australia, IEEE 75th Vehicular Technology Conference, (2012), 1-5. |
[13] |
L. Vandenberghe, Lecture Notes: Optimization Methods for Large-Scale Systems, UCLA, Spring 2013-2014. |
[14] |
A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Linear precoding via conic optimizaiton for fixed MIMO receivers, IEEE Trans. Signal Process., 54 (2006), 161-176. |
[15] |
A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Zero-forcing precoding and generalized inverses, IEEE Trans. Signal Process., 56 (2008), 4409-4418.
doi: 10.1109/TSP.2008.924638. |
show all references
References:
[1] |
S. J. Benson, Y. Ye and X. Zhang, Solving large-scale sparese semidefinite programs for combinational optimization, SIAM J. Optim., 10 (2000), 443-461.
doi: 10.1137/S1052623497328008. |
[2] |
S. Boyd and L. Vandenberghe, Covex Optimization, Cambrige, UK: Cambrige University Press, 2004.
doi: 10.1017/CBO9780511804441. |
[3] |
G. Caire and S. Shamai (Shitz), On the achievable throughput of multiatenna Gaussian broadcast channel, IEEE Trans. Inf. Theory., 49 (2003), 1691-1706.
doi: 10.1109/TIT.2003.813523. |
[4] |
H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size, Signal Process., 106 (2015), 10-14. |
[5] |
K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints, IEEE International Symposium on Information Theory, Nice, France, (2007), 101-105. |
[6] |
S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric, IEEE Trans. Wireless Commun., 12 (2013), 228-236. |
[7] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer esign with signed Power-of-Two coefficients, Journal of Industrial and Management Optimization, 12 (2016), 625-636. |
[8] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198. |
[9] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas, J. Glob. Optim., 62 (2015), 877-886.
doi: 10.1007/s10898-014-0237-4. |
[10] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints, Optim. Lett., 8 (2014), 1829-1843.
doi: 10.1007/s11590-013-0673-y. |
[11] |
B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process., 63 (2015), 4179-4190.
doi: 10.1109/TSP.2015.2437846. |
[12] |
H. Suzuki, D. Robertson, N. L. Ratnayake and K. Ziri-Castro, Prediction and measurement of multiuser MIMO-OFDM channel in rural Australia, IEEE 75th Vehicular Technology Conference, (2012), 1-5. |
[13] |
L. Vandenberghe, Lecture Notes: Optimization Methods for Large-Scale Systems, UCLA, Spring 2013-2014. |
[14] |
A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Linear precoding via conic optimizaiton for fixed MIMO receivers, IEEE Trans. Signal Process., 54 (2006), 161-176. |
[15] |
A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Zero-forcing precoding and generalized inverses, IEEE Trans. Signal Process., 56 (2008), 4409-4418.
doi: 10.1109/TSP.2008.924638. |
[1] |
Hanyu Cao, Meiying Zhang, Huanxi Cai, Wei Gong, Min Su, Bin Li. A zero-forcing beamforming based time switching protocol for wireless powered internet of things system. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2913-2922. doi: 10.3934/jimo.2019086 |
[2] |
Bin Li, Hai Huyen Dam, Antonio Cantoni. A global optimal zero-forcing Beamformer design with signed power-of-two coefficients. Journal of Industrial and Management Optimization, 2016, 12 (2) : 595-607. doi: 10.3934/jimo.2016.12.595 |
[3] |
Zhong Wan, Chaoming Hu, Zhanlu Yang. A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1157-1169. doi: 10.3934/dcdsb.2011.16.1157 |
[4] |
Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial and Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003 |
[5] |
Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241 |
[6] |
Zelik S.. Formally gradient reaction-diffusion systems in Rn have zero spatio-temporal topological. Conference Publications, 2003, 2003 (Special) : 960-966. doi: 10.3934/proc.2003.2003.960 |
[7] |
Zbigniew Bartosiewicz, Ülle Kotta, Maris Tőnso, Małgorzata Wyrwas. Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Mathematical Control and Related Fields, 2016, 6 (2) : 217-250. doi: 10.3934/mcrf.2016002 |
[8] |
Ruitong Wu, Yongming Li, Jun Hu, Wei Liu, Shaocheng Tong. Switching mechanism-based event-triggered fuzzy adaptive control with prescribed performance for MIMO nonlinear systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1713-1731. doi: 10.3934/dcdss.2021168 |
[9] |
Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017 |
[10] |
Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033 |
[11] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[12] |
Guo Ben-Yu, Wang Zhong-Qing. Modified Chebyshev rational spectral method for the whole line. Conference Publications, 2003, 2003 (Special) : 365-374. doi: 10.3934/proc.2003.2003.365 |
[13] |
Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated bregman operator splitting with backtracking. Inverse Problems and Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048 |
[14] |
Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078 |
[15] |
S. Rüdiger, J. Casademunt, L. Kramer. Kinks in stripe forming systems under traveling wave forcing. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1027-1042. doi: 10.3934/dcdsb.2005.5.1027 |
[16] |
Siniša Slijepčević. Extended gradient systems: Dimension one. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 503-518. doi: 10.3934/dcds.2000.6.503 |
[17] |
Xiao Wang, Guowei Zhang, Yongqiang Li, Na Qu. A heuristically accelerated reinforcement learning method for maintenance policy of an assembly line. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022047 |
[18] |
Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems and Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010 |
[19] |
José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic and Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025 |
[20] |
Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems and Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]