2016, 6(3): 297-304. doi: 10.3934/naco.2016012

A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method

1. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845

2. 

School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009

Received  March 2015 Revised  September 2016 Published  September 2016

In this paper, we consider the zero-forcing beamforming (ZFBF) under the per-antenna power constraints (PAPC). Our objective is to maximize the minimum user information rate. Traditionally, ZFBF under PAPC with a max-min performance measure can be transformed into a second order cone problem and then solved by applying the interior point method. However, it is expensive to realize this design in practice due to high computational complexity per iteration. An alternative low complexity zero-forcing beamformer design is proposed for MU-MIMO systems by applying a dual gradient method. Different from the step size rule in the literature, a backtracking line search is adopted. A numerical example is provided to show the effectiveness of the proposed method.
Citation: Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012
References:
[1]

S. J. Benson, Y. Ye and X. Zhang, Solving large-scale sparese semidefinite programs for combinational optimization, SIAM J. Optim., 10 (2000), 443-461. doi: 10.1137/S1052623497328008.

[2]

S. Boyd and L. Vandenberghe, Covex Optimization, Cambrige, UK: Cambrige University Press, 2004. doi: 10.1017/CBO9780511804441.

[3]

G. Caire and S. Shamai (Shitz), On the achievable throughput of multiatenna Gaussian broadcast channel, IEEE Trans. Inf. Theory., 49 (2003), 1691-1706. doi: 10.1109/TIT.2003.813523.

[4]

H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size, Signal Process., 106 (2015), 10-14.

[5]

K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints, IEEE International Symposium on Information Theory, Nice, France, (2007), 101-105.

[6]

S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric, IEEE Trans. Wireless Commun., 12 (2013), 228-236.

[7]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer esign with signed Power-of-Two coefficients, Journal of Industrial and Management Optimization, 12 (2016), 625-636.

[8]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198.

[9]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas, J. Glob. Optim., 62 (2015), 877-886. doi: 10.1007/s10898-014-0237-4.

[10]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints, Optim. Lett., 8 (2014), 1829-1843. doi: 10.1007/s11590-013-0673-y.

[11]

B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process., 63 (2015), 4179-4190. doi: 10.1109/TSP.2015.2437846.

[12]

H. Suzuki, D. Robertson, N. L. Ratnayake and K. Ziri-Castro, Prediction and measurement of multiuser MIMO-OFDM channel in rural Australia, IEEE 75th Vehicular Technology Conference, (2012), 1-5.

[13]

L. Vandenberghe, Lecture Notes: Optimization Methods for Large-Scale Systems, UCLA, Spring 2013-2014.

[14]

A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Linear precoding via conic optimizaiton for fixed MIMO receivers, IEEE Trans. Signal Process., 54 (2006), 161-176.

[15]

A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Zero-forcing precoding and generalized inverses, IEEE Trans. Signal Process., 56 (2008), 4409-4418. doi: 10.1109/TSP.2008.924638.

show all references

References:
[1]

S. J. Benson, Y. Ye and X. Zhang, Solving large-scale sparese semidefinite programs for combinational optimization, SIAM J. Optim., 10 (2000), 443-461. doi: 10.1137/S1052623497328008.

[2]

S. Boyd and L. Vandenberghe, Covex Optimization, Cambrige, UK: Cambrige University Press, 2004. doi: 10.1017/CBO9780511804441.

[3]

G. Caire and S. Shamai (Shitz), On the achievable throughput of multiatenna Gaussian broadcast channel, IEEE Trans. Inf. Theory., 49 (2003), 1691-1706. doi: 10.1109/TIT.2003.813523.

[4]

H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size, Signal Process., 106 (2015), 10-14.

[5]

K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints, IEEE International Symposium on Information Theory, Nice, France, (2007), 101-105.

[6]

S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric, IEEE Trans. Wireless Commun., 12 (2013), 228-236.

[7]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer esign with signed Power-of-Two coefficients, Journal of Industrial and Management Optimization, 12 (2016), 625-636.

[8]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198.

[9]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas, J. Glob. Optim., 62 (2015), 877-886. doi: 10.1007/s10898-014-0237-4.

[10]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints, Optim. Lett., 8 (2014), 1829-1843. doi: 10.1007/s11590-013-0673-y.

[11]

B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process., 63 (2015), 4179-4190. doi: 10.1109/TSP.2015.2437846.

[12]

H. Suzuki, D. Robertson, N. L. Ratnayake and K. Ziri-Castro, Prediction and measurement of multiuser MIMO-OFDM channel in rural Australia, IEEE 75th Vehicular Technology Conference, (2012), 1-5.

[13]

L. Vandenberghe, Lecture Notes: Optimization Methods for Large-Scale Systems, UCLA, Spring 2013-2014.

[14]

A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Linear precoding via conic optimizaiton for fixed MIMO receivers, IEEE Trans. Signal Process., 54 (2006), 161-176.

[15]

A. Wiesel, Y. C. Eldar and S. Shamai (Shitz), Zero-forcing precoding and generalized inverses, IEEE Trans. Signal Process., 56 (2008), 4409-4418. doi: 10.1109/TSP.2008.924638.

[1]

Hanyu Cao, Meiying Zhang, Huanxi Cai, Wei Gong, Min Su, Bin Li. A zero-forcing beamforming based time switching protocol for wireless powered internet of things system. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2913-2922. doi: 10.3934/jimo.2019086

[2]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A global optimal zero-forcing Beamformer design with signed power-of-two coefficients. Journal of Industrial and Management Optimization, 2016, 12 (2) : 595-607. doi: 10.3934/jimo.2016.12.595

[3]

Zhong Wan, Chaoming Hu, Zhanlu Yang. A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1157-1169. doi: 10.3934/dcdsb.2011.16.1157

[4]

Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial and Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003

[5]

Karl Kunisch, Daniel Walter. On fast convergence rates for generalized conditional gradient methods with backtracking stepsize. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022026

[6]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[7]

Zelik S.. Formally gradient reaction-diffusion systems in Rn have zero spatio-temporal topological. Conference Publications, 2003, 2003 (Special) : 960-966. doi: 10.3934/proc.2003.2003.960

[8]

Zbigniew Bartosiewicz, Ülle Kotta, Maris Tőnso, Małgorzata Wyrwas. Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Mathematical Control and Related Fields, 2016, 6 (2) : 217-250. doi: 10.3934/mcrf.2016002

[9]

Ruitong Wu, Yongming Li, Jun Hu, Wei Liu, Shaocheng Tong. Switching mechanism-based event-triggered fuzzy adaptive control with prescribed performance for MIMO nonlinear systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1713-1731. doi: 10.3934/dcdss.2021168

[10]

Dumitru Motreanu, Calogero Vetro, Francesca Vetro. Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 309-321. doi: 10.3934/dcdss.2018017

[11]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[12]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[13]

Guo Ben-Yu, Wang Zhong-Qing. Modified Chebyshev rational spectral method for the whole line. Conference Publications, 2003, 2003 (Special) : 365-374. doi: 10.3934/proc.2003.2003.365

[14]

Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078

[15]

Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated bregman operator splitting with backtracking. Inverse Problems and Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048

[16]

S. Rüdiger, J. Casademunt, L. Kramer. Kinks in stripe forming systems under traveling wave forcing. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1027-1042. doi: 10.3934/dcdsb.2005.5.1027

[17]

Siniša Slijepčević. Extended gradient systems: Dimension one. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 503-518. doi: 10.3934/dcds.2000.6.503

[18]

Xiao Wang, Guowei Zhang, Yongqiang Li, Na Qu. A heuristically accelerated reinforcement learning method for maintenance policy of an assembly line. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022047

[19]

Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems and Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010

[20]

José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic and Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025

 Impact Factor: 

Metrics

  • PDF downloads (209)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]