Advanced Search
Article Contents
Article Contents

# Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures

• * Corresponding author: Erik Kropat

+ Honorary positions: Faculty of Economics, Business and Law, University of Siegen, Germany; Center for Research on Optimization and Control, University of Aveiro, Portugal; University of North Sumatra, Indonesia

• In modern material sciences and multi-scale physics homogenization approaches provide a global characterization of physical systems that depend on the topology of the underlying microgeometry. Purely formal approaches such as averaging techniques can be applied for an identification of the averaged system. For models in variational form, two-scale convergence for network functions can be used to derive the homogenized model. The sequence of solutions of the variational microcsopic models and the corresponding sequence of tangential gradients converge toward limit functions that are characterized by the solution of the variational macroscopic model. Here, a further extension of this result is proved. The variational macroscopic model can be equivalently represented by a homogenized model on the superior domain and a certain number of reference cell problems. In this way, the results obtained by averaging strategies are supported by notions of convergence for network functions on varying domains.

Mathematics Subject Classification: Primary: 4B45, 34E13, 34E05, 34E10.

 Citation:

• Figure 1.  The homogenization process: The sequence of solutions of the microscopic model as well as the corresponding sequence of tangential gradients are weakly two-scale convergent. The limits of these sequences can be represented by the solution of the homogenized model

Figure 2.  Two-scale transform: The function $x:\Omega \times {\mathscr{Y}} \rightarrow {\cal{N}}^\Omega_\varepsilon$ is surjective, but not injective

Figure 3.  Two-scale transform: Mapping from ${\cal{N}}^\Omega_\varepsilon$ to the product $\Omega \times {\mathscr{Y}}$

•  [1] A. Abdulle, Y. Bai and G. Vilmart, An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems, International Journal for Numerical Methods in Engineering, 99 (2014), 469-486.  doi: 10.1002/nme.4682. [2] T. Arbogast, J. Douglas Jr and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM Journal on Mathematical Analysis, 21 (1990), 823-836.  doi: 10.1137/0521046. [3] A. Braides, Γ-Convergence for Beginners, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, Oxford, 1988. doi: 10.1093/acprof:oso/9780198507840.001.0001. [4] S. Bochner, Beiträge zur theorie der fastperiodischen funktionen, Math. Annalen., 96 (1926), 119-147.  doi: 10.1007/BF01209156. [5] S. Bochner and J. von Neumann, Almost periodic function in a group Ⅱ, Trans. Amer. Math. Soc., 37 (1935), 21-50.  doi: 10.2307/1989694. [6] H. Bohr, Zur theorie der fastperiodischen funktionen I, Acta Mathematica, 45 (1925), 29-127.  doi: 10.1007/BF02395468. [7] D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Springer, New York, 1999. doi: 10.1007/978-1-4612-2158-6. [8] G. Dal Maso, An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and Their Applications, Birkhuser, Basel, 1993. doi: 10.1007/978-1-4612-0327-8. [9] A. Fortin, J. M. Urquiza and R. Bois, A mesh adaptation method for 1D-boundary layer problems, International Journal of Numerical Analysis and Modeling, Series B, 3 (2012), 408-428. [10] I. G. Graham, T. Y. Hou, O. Lakkis and R. Scheichl, Numerical Analysis of Multiscale Problems, Lecture Notes in Computational Science and Engineering, 83, Springer, Berlin, Heidelberg, 2012. Interdisciplinary Applied Mathematics, Springer, New York, 2003. doi: 10.1007/978-3-642-22061-6. [11] S. Göktepe and C. Miehe, A micro-macro approach to rubber-like materials. Part Ⅲ: The micro-sphere model of anisotropic Mullins-type damage, Journal of the Mechanics and Physics of Solids, 53 (2005), 2259-2283.  doi: 10.1016/j.jmps.2005.04.010. [12] B. Hassani and, E. Hinton, Homogenization and Structural Topology Optimization: Theory, Practice and Software, Springer, London, 2011. doi: 10.1007/978-1-4471-0891-7. [13] V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-642-84659-5. [14] E. Kropat, Über die Homogenisierung von Netzwerk-Differentialgleichungen, Wissenschaftlicher Verlag Berlin, Berlin, 2007. [15] E. Kropat, Homogenization of optimal control problems on large curvilinear networks with a periodic microstructure -Results on $S$-homogenization and Γ-convergence, Numerical Algebra, Control and Optimization, 7 (2017), 51-76.  doi: 10.3934/naco.2017003. [16] E. Kropat and S. Meyer-Nieberg, Homogenization of singularly perturbed diffusion-advectionreaction equations on periodic networks, in Proceedings of the 15th IFAC Workshop on Control Applications of Optimization (CAO 2012), September 13-16,2012, Rimini, Italy, (2012), 83-88. [17] E. Kropat, S. Meyer-Nieberg and G. -W. Weber, Two-scale asymptotic analysis of singularly perturbed elliptic differential equations on large periodic networks, Dynamics of Continuous, Discrete and Impulsive Systems -Series B: Applications, 22 (2015), 293-324. [18] E. Kropat, S. Meyer-Nieberg and G. -W. Weber, Singularly perturbed diffusion-advection-reaction processes on extremely large three-dimensional curvilinear networks with a periodic microstructure -efficient solution strategies based on homogenization theory, Numerical Algebra, Control and Optimization, 9 (2016), 183-219.  doi: 10.3934/naco.2016008. [19] E. Kropat, S. Meyer-Nieberg and G. -W. Weber, A topology optimization approach for micro-architectured systems on singularly perturbed periodic manifolds -Two-scale asymptotic analysis and the influence of the network topology, Dynamics of Continuous, Discrete and Impulsive Systems -Series B: Applications & Algorithms, 23 (2016), 155-193. [20] M. Lenczner, Homogénéisation d'un circuit électrique, Comptes Rendus de l'Académie des Sciences -Series IIB -Mechanics-Physics-Chemistry-Astronomy, 324 (1997), 537-542. [21] M. Lenczner, Multiscale model for atomic force microscope array mechanical behaviour, Applied Physics Letters, 90 (2007), 091908. [22] M. Lenczner and D. Mercier, Homogenization of periodic electrical networks including voltage to current amplifiers, Multiscale Modeling and Simulation, 2 (2004), 359-397.  doi: 10.1137/S1540345903423919. [23] M. Lenczner and G. Senouci-Bereksi, Homogenization of electrical networks including voltage-to-voltage amplifiers, Mathematical Models and Methods in Applied Sciences, 9 (1999), 899-932.  doi: 10.1142/S0218202599000415. [24] C. Miehe and S. Göktepe, A micro-macro approach to rubber-like materials. Part Ⅱ: The micro-sphere model of finite rubber viscoelasticity, Journal of the Mechanics and Physics of Solids, 53 (2005), 2231-2258.  doi: 10.1016/j.jmps.2005.04.006. [25] C. Miehe, S. Göktepe and F. Lulei, A micro-macro approach to rubber-like materials -Part Ⅰ: the non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, 52 (2004), 2617-2660.  doi: 10.1016/j.jmps.2004.03.011. [26] E. Nuhn and E. Kropat and W. Reinhardt and S. Pckl, Preparation of complex landslide simulation results with clustering approaches for decision support and early warning, in Proceedings of the 45th Annual Hawaii International Conference on System Sciences (HICSS-45), January 4-7,2012, Grand Wailea, Maui, Hawaii, (eds. H. Ralph and Jr. Sprague), IEEE Computer Society, (2012), 1089–1096. [27] G. A. Pavliotis and A. Stuart, Multiscale methods, averaging and homogenization, Texts in Applied Mathematics Vol. 53, Springer, New York, 2008. [28] C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems, Lecture Notes in Computational Science and Engineering, 90, Springer, Berlin, Heidelberg, 2013. doi: 10.1007/978-3-642-23588-7. [29] L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Springer, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-05195-1. [30] M. Vogelius, A homogenization result for planar, polygonal networks, RAIRO Modélisation Mathématique et Analyse Numérique, 25 (1991), 483-514.  doi: 10.1051/m2an/1991250404831.

Figures(3)

## Article Metrics

HTML views(658) PDF downloads(222) Cited by(0)

## Other Articles By Authors

• on this site
• on Google Scholar

### Catalog

/

DownLoad:  Full-Size Img  PowerPoint