[1]
|
J. Cao and C. Xu, A high order scheme for the numerical solution of the fractional ordinary differential equations, Journal of Computational Physics, 238 (2013), 154-168.
doi: 10.1016/j.jcp.2012.12.013.
|
[2]
|
S. Campbell and P. Kunkel, Solving higher index DAE optimal control problems, Numerical Algebra, Control & Optimization, 6 (2016), 447-472.
doi: 10.3934/naco.2016020.
|
[3]
|
A. Cartea and D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Physica A: Statistical Mechanics and its Applications, 374 (2007), 749-763.
doi: 10.1063/1.2336114.
|
[4]
|
W. Chen and S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation, Comp. Math. With Appl., 67 (2014), 77-90.
doi: 10.1016/j.camwa.2013.10.007.
|
[5]
|
W. Chen and S. Wang, A finite difference method for pricing European and American options under a geometric Levy process, Journal of Industrial & Management Optimization, 11 (2015), 241-264.
doi: 10.3934/jimo.2015.11.241.
|
[6]
|
W. Chen and S. Wang, A 2nd-Order FDM for a 2D fractional Black-Scholes equation, in Numerical Analysis and Its Applications. NAA 2016 (eds. Dimov I., Farag I., Vulkov L.), Lecture Notes in Computer Science, Springer, 10187 (2017), 46–57.
|
[7]
|
W. Chen and S. Wang, A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing, Applied Mathematics and Computation, 305 (2017), 174-187.
doi: 10.1016/j.amc.2017.01.069.
|
[8]
|
C. F. M. Coimbra, Mechanics with variable-order differential operators, Ann. Phis. (Leipzig), 12 (2003), 692-703.
doi: 10.1002/andp.200310032.
|
[9]
|
W. Deng and C. Li, Numerical schemes for fractional ordinary differential equations, Numerical Modeling, Dr. Peep Miidla (Ed.), InTech, 2012.
|
[10]
|
K. Diethelm and N. J. Ford, Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications, 265 (2002), 229-248.
doi: 10.1006/jmaa.2000.7194.
|
[11]
|
K. Diethelm, N. J. Ford and A. D. Freed, A predictor corrector approach for the numerical solution of fractional differential equation, Nonlinear Dynam, 29 (2002), 2-22.
doi: 10.1023/A:1016592219341.
|
[12]
|
K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52.
doi: 10.1023/B:NUMA.0000027736.85078.be.
|
[13]
|
K. Diethelm, N. J. Ford, A. D. Freed and Yu. Luchko, Algorithms for the fractional calculus: a selection of numerical methods, Comput. Method appl. Mech. Engrg., 194 (2005), 743-773.
doi: 10.1016/j.cma.2004.06.006.
|
[14]
|
B. Guo, X. Pu and F. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, World Scientific, 2015.
doi: 10.1142/9543.
|
[15]
|
H. Huang, Y. Tang and L. Vazquez, Convergence analysis of a block-by block method for fractional differential equation, Numer. Math. Theor. Methods Appl., 5 (2012), 229-241.
doi: 10.4208/nmtma.2012.m1038.
|
[16]
|
A. A. Kilbas and S. A. Marzan, Cauchy problem for differential equation with Caputo derivative, Fractional Calculus and Applied Analysis, 7 (2014), 297-321.
|
[17]
|
K. Kumar and O. P. Agrawal, An approximate method for numerical solution of fractional differential equations, Signal Process, 86 (2006), 2602-2610.
|
[18]
|
A. Laforgia and P. Natalini, Exponential, gamma and polygamma functions: Simple proofs of classical and new inequalities, J. Math. Anal. Appl., 407 (2013), 459-504.
doi: 10.1016/j.jmaa.2013.05.045.
|
[19]
|
C. Li and C. Tao, On the fractional Adams method, Comput. Math. Appl., 58 (2009), 1573-1588.
doi: 10.1016/j.camwa.2009.07.050.
|
[20]
|
C. Li and F. Zeng, The finite difference methods for fractional ordinary differential equations, Numerical Functional Analysis and Optimization, 34 (2013), 149-179.
doi: 10.1080/01630563.2012.706673.
|
[21]
|
R. Lin and F. Liu, Fractional high order methods for the nonlinear fractional ordinary differential equation, Nonlinear Analysis, 66 (2007), 856-869.
doi: 10.1016/j.na.2005.12.027.
|
[22]
|
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.
|
[23]
|
F. Mainardi,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.
doi: 10.1142/9781848163300.
|
[24]
|
S. Mohd Mahali, S. Wang and X. Lou, Determination of effective diffusion coefficients of drug delivery devices by a state observer approach, Discrete and Continuous Dynamical Systems Series B, 17 (2011), 1119-1136.
|
[25]
|
S. Mohd Mahali, S. Wang and X. Lou, Estimation of effective diffusion coefficients of drug delivery devices in a flow-through system, Journal of Engineering Mathematics, 87 (2014), 139-152.
doi: 10.1007/s10665-013-9669-y.
|
[26]
|
M. D. Ortigueria and J. A. T. Machodo, Special section: Fractional calculus applications in signals and systems, Signal Processing, 86 (2006), 2503-3094.
|
[27]
|
B. Shen, X. Wang and C. Liu, Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control, Numerical Algebra, Control & Optimization, 5 (2015), 369-380.
doi: 10.3934/naco.2015.5.369.
|
[28]
|
S. Sorokin and M. Staritsyn, Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control, Numerical Algebra, Control & Optimization, 7 (2017), 201-210.
doi: 10.3934/naco.2017014.
|
[29]
|
M. Y. Tan, L. S. Jennings and S. Wang, Analysing human periodic walking at different speeds using parametrization enhancing transform in dynamic optimization, Pacific Journal of Optimization, 12 (2016), 557-586.
|
[30]
|
Y. Wang, C. Yu and K. L. Teo, A new computational strategy for optimal control problem with a cost on changing control, Numerical Algebra, Control & Optimization, 6 (2016), 339-364.
doi: 10.3934/naco.2016016.
|