September  2017, 7(3): 345-357. doi: 10.3934/naco.2017022

A type of new consensus protocol for two-dimension multi-agent systems

Institute of Automation, Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

* Corresponding author: Zhang Yibo

The reviewing process of the paper was handled by Nanjing Huang as Guest Editors

Received  January 2016 Revised  June 2017 Published  July 2017

Fund Project: This work is supported by the National Natural Science Foundation of China (No. 61374083,61473264), Zhejiang Province Key Project of Science and Technology(No. 2014C03027), and Zhejiang Provincial Natural Science Foundation of China (No. LZ17F030002, LY17F030024).

A type of new consensus protocol for a two-dimension multi-agent system (MAS) is proposed. By introducing the conventional MAS and protocol, a dynamic equation of the first-order two-dimension MAS is proposed. then a new protocol with its Laplacian matrix is adopted. According to two types possible roots of character equations, two lemmas are proposed to show consensus asymptotical conditions. Furthermore, the convergence conditions of parameters are analyzed. Several simulated examples illustrate that consensus is achieved if the convergence conditions are satisfied.

Citation: Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022
References:
[1]

Y. Y. Chen and Y. P. Tian, Directed coordinated control for multi-agent formation motion onaset of given curves, Acta Automatica Sinica, 35 (2009), 1541-1549.  doi: 10.3724/SP.J.1004.2009.01541.

[2]

H. HuangC. B. Yu and Q. H. Wu, Autonomous scale control of multi-agent formations with only shape constraints, International Journal of Robust and Nonlinear Control, 23 (2013), 765-791.  doi: 10.1002/rnc.2800.

[3]

A. JadbabaieJ. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, Proceedings of the 41st IEEE Conference on Decision and Control,, 48 (2003), 2953-2958.  doi: 10.1109/CDC.2003.812781.

[4]

Z. K. LiX. D. LiuW. Ren and L. H. Xie, Distributed tracking control for linear multi-agent systems with a leader of bounded unknown input, IEEE Transactions on Automatic Control, 58 (2013), 518-523.  doi: 10.1109/TAC.2012.2208295.

[5]

Z. Y. LinL. L. WangZ. M. Han and M. Y. Fu, Distributed formation control of multi-Agent systems using complex Laplacian, IEEE Transactions on Automatic Control, 59 (2014), 1765-1777.  doi: 10.1109/TAC.2014.2309031.

[6]

C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensus ability of linear multi-agent systems, IEEE Transactions on Automatic Control, 55 (2010), 1263-1268.  doi: 10.1109/TAC.2010.2042764.

[7]

W. Ren and E. Atkins, Distributed multi-vehicle coordinated control via local information exchange, International Journal of Robust and Nonlinear Control, 17 (2007), 1002-1033.  doi: 10.1002/rnc.1147.

[8]

W. Yu and Y. F. Zheng, Dynamic behavior of multi-agent systems with distributed sampled control, Acta Automatica Sinica, 38 (2012), 357-365.  doi: 10.3724/SP.J.1004.2012.00357.

show all references

References:
[1]

Y. Y. Chen and Y. P. Tian, Directed coordinated control for multi-agent formation motion onaset of given curves, Acta Automatica Sinica, 35 (2009), 1541-1549.  doi: 10.3724/SP.J.1004.2009.01541.

[2]

H. HuangC. B. Yu and Q. H. Wu, Autonomous scale control of multi-agent formations with only shape constraints, International Journal of Robust and Nonlinear Control, 23 (2013), 765-791.  doi: 10.1002/rnc.2800.

[3]

A. JadbabaieJ. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, Proceedings of the 41st IEEE Conference on Decision and Control,, 48 (2003), 2953-2958.  doi: 10.1109/CDC.2003.812781.

[4]

Z. K. LiX. D. LiuW. Ren and L. H. Xie, Distributed tracking control for linear multi-agent systems with a leader of bounded unknown input, IEEE Transactions on Automatic Control, 58 (2013), 518-523.  doi: 10.1109/TAC.2012.2208295.

[5]

Z. Y. LinL. L. WangZ. M. Han and M. Y. Fu, Distributed formation control of multi-Agent systems using complex Laplacian, IEEE Transactions on Automatic Control, 59 (2014), 1765-1777.  doi: 10.1109/TAC.2014.2309031.

[6]

C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensus ability of linear multi-agent systems, IEEE Transactions on Automatic Control, 55 (2010), 1263-1268.  doi: 10.1109/TAC.2010.2042764.

[7]

W. Ren and E. Atkins, Distributed multi-vehicle coordinated control via local information exchange, International Journal of Robust and Nonlinear Control, 17 (2007), 1002-1033.  doi: 10.1002/rnc.1147.

[8]

W. Yu and Y. F. Zheng, Dynamic behavior of multi-agent systems with distributed sampled control, Acta Automatica Sinica, 38 (2012), 357-365.  doi: 10.3724/SP.J.1004.2012.00357.

Figure 1.  All possible of multiple results of $\bar{\mu} _{i\pm }$
Figure 2.  A digraph without leaders
Figure 3.  Simulation results 1 of condition (1) in Lemma 1
Figure 4.  Simulation results 2 of condition (1) in Lemma 1
Figure 5.  Simulation results 1 of condition (2) in Lemma 1
Figure 6.  Simulation results 2 of condition (2) in Lemma 1
Figure 7.  Simulation results 2 of condition (3) in Lemma 1
Figure 8.  Simulation results of condition (3) in Lemma 1
Figure 9.  Simulation results of condition (3) in Lemma 1
Figure 10.  Simulation results 1 of condition (1) in Lemma 2
Figure 11.  Simulation results 2 of condition (1) in Lemma 2
Figure 12.  Simulation results 1 of condition (2) in Lemma 2
Figure 13.  Simulation results 1 of condition (2) in Lemma 2
Figure 14.  Simulation results if Lemma 1 is not hold
Figure 15.  Simulation results if Lemma 2 is not hold
[1]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[2]

Ke Yang, Wencheng Zou, Zhengrong Xiang, Ronghao Wang. Fully distributed consensus for higher-order nonlinear multi-agent systems with unmatched disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1535-1551. doi: 10.3934/dcdss.2020396

[3]

Mei Luo, Jinrong Wang, Yumei Liao. Bounded consensus of double-integrator stochastic multi-agent systems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022088

[4]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks and Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[5]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111

[6]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[7]

Xiaojin Huang, Hongfu Yang, Jianhua Huang. Consensus stability analysis for stochastic multi-agent systems with multiplicative measurement noises and Markovian switching topologies. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 601-610. doi: 10.3934/naco.2021024

[8]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105

[9]

Richard Carney, Monique Chyba, Chris Gray, George Wilkens, Corey Shanbrom. Multi-agent systems for quadcopters. Journal of Geometric Mechanics, 2022, 14 (1) : 1-28. doi: 10.3934/jgm.2021005

[10]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016

[11]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

[12]

Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022001

[13]

Nadia Loy, Andrea Tosin. Boltzmann-type equations for multi-agent systems with label switching. Kinetic and Related Models, 2021, 14 (5) : 867-894. doi: 10.3934/krm.2021027

[14]

Mohammed Al Horani, Angelo Favini. First-order inverse evolution equations. Evolution Equations and Control Theory, 2014, 3 (3) : 355-361. doi: 10.3934/eect.2014.3.355

[15]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[16]

Arthur Bottois, Nicolae Cîndea. Controllability of the linear elasticity as a first-order system using a stabilized space-time mixed formulation. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022028

[17]

Brendan Pass. Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1623-1639. doi: 10.3934/dcds.2014.34.1623

[18]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control and Related Fields, 2021, 11 (4) : 739-769. doi: 10.3934/mcrf.2020045

[20]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

 Impact Factor: 

Metrics

  • PDF downloads (168)
  • HTML views (247)
  • Cited by (0)

Other articles
by authors

[Back to Top]