
-
Previous Article
Globalizer: A novel supercomputer software system for solving time-consuming global optimization problems
- NACO Home
- This Issue
-
Next Article
Linearly-growing reductions of Karp's 21 NP-complete problems
Fourier-splitting method for solving hyperbolic LQR problems
1. | Institute of Mathematics, Eötvös Loránd University Budapest, MTA-ELTE Numerical Analysis and Large Networks Research Group, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary |
2. | School of Mathematical Sciences and Information Technology, Yachay Tech, Hacienda San José y Proyecto Yachay, EC100650 Urcuquí, Ecuador |
3. | Department of Mathematics, University of Innsbruck, Technikerstrasse 13, A-6020 Innsbruck, Austria |
We consider the numerical approximation to linear quadratic regulator problems for hyperbolic partial differential equations where the dynamics is driven by a strongly continuous semigroup. The optimal control is given in feedback form in terms of Riccati operator equations. The computational cost relies on solving the associated Riccati equation and computing the optimal state. In this paper we propose a novel approach based on operator splitting idea combined with Fourier's method to efficiently compute the optimal state. The Fourier's method allows to accurately approximate the exact flow making our approach computational efficient. Numerical experiments in one and two dimensions show the performance of the proposed method.
References:
[1] |
H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank,
Matrix Riccati Equations in Control and Systems Theory, Birkhäuser, Basel, Switzerland, 2003. |
[2] |
A. H. Al-Mohy and N. J. Higham,
Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), 488-511.
|
[3] |
E. Arias, V. Hernández, J. Ibanes and J. Peinado,
A family of BDF algorithms for solving differential matrix Riccati equations using adaptive techniques, Procedia Computer Science, 1 (2010), 2569-2577.
|
[4] |
E. Armstrong,
An extension of Bass' algorithm for stabilizing linear continuous constant systems, IEEE Trans. Automatic Control, AC-20 (1975), 153-154.
|
[5] |
A. Balakrishnan,
Applied Functional Analysis, Springer-Verlag, New York, 1981. |
[6] |
H. Banks, R. Smith and Y. Wang,
The modeling of piezoceramic patch interactions with shells, plates and beams, Quart. Appl. Math., 53 (1995), 353-381.
|
[7] |
A. Bátkai, P. Csomós, B. Farkas and G. Nickel,
Operator splitting for non-autonomous evolution equations, J. Funct. Anal., 260 (2011), 2163-2192.
|
[8] |
A. Bátkai, P. Csomós and G. Nickel,
Operator splittings and spatial approximations for evolution equations, J. Evol. Eqs., 9 (2009), 613-636.
|
[9] |
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter,
Representation and Control of Infinite Dimensional Systems, Birkhäuser, 1993. |
[10] |
P. Benner, P. Ezzatti, H. Mena, E. S. Quintana-Ortí and A. Remón,
Solving matrix equations on multi-core and many-core architectures, Algorithms, 6 (2013), 857-870.
|
[11] |
P. Benner and H. Mena,
Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations, Journal of Numerical Mathematics (2016), in press. |
[12] |
P. Benner and H. Mena,
Rosenbrock methods for solving differential Riccati equations, IEEE Transactions on Automatic Control, 58 (2013), 2950-2957.
|
[13] |
P. Benner and J. Saak,
Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey, GAMM Mitteilungen, 36 (2013), 32-52.
|
[14] |
P. Csomós and J. Winckler,
A semigroup proof for the well-posedness of the linearised shallow water equations, J. Anal. Math., 43 (2017), 445-459.
|
[15] |
G. Da Prato,
Direct solution of a Riccati equation arising in stochastic control theory, Appl. Math. Optim., 11 (1984), 191-208.
|
[16] |
G. Da Prato, P. Kunstmann, I. Lasiecka, A. Lunardi, R. Schnaubelt and L. Weis,
Functional Analytic Methods for Evolution Equations, Springer-Verlag, Berlin, 2004. |
[17] |
K. Engel and R. Nagel,
One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. |
[18] |
F. Flandoli,
Direct solution of a Riccati equation arising in a stochastic control problem with control and observation on the boundary, Appl. Math. Optim., 14 (1986), 107-129.
|
[19] |
C. Hafizoglu, I. Lasiecka, T. Levajković, H. Mena and A. Tuffaha,
The stochastic linear quadratic problem with singular estimates, SIAM J. Control Optim., 55 (2017), 595-626.
|
[20] |
E. Hansen and A. Ostermann,
Exponential splitting for unbounded operators, Math. Comput., 78 (2009), 1485-1496.
|
[21] |
A. Ichikawa,
Dynamic programming approach to stochastic evolution equation, SIAM J. Control. Optim., 17 (1979), 152-174.
|
[22] |
A. Ichikawa and H. Katayama,
Remarks on the time-varying H∞ Riccati equations, Sys. Cont. Lett., 37 (1999), 335-345.
|
[23] |
O. Iftime and M. Opmeer, A representation of all bounded selfadjoint solutions of the algebraic Riccati equation for systems with an unbounded observation operator, Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, December 14-07 (2004), 2865-2870. |
[24] |
K. Ito and F. Kappel,
Evolution Equations and Approximations, World Scientific, Singapore, 2002. |
[25] |
T. Jahnke and Ch. Lubich,
Error bounds for exponential operator splittings, BIT, 40 (2000), 735-744.
|
[26] |
D. Kleinman,
On an iterative technique for Riccati equation computations, IEEE Trans. Automatic Control, AC-13 (1968), 114-115.
|
[27] |
A. Kofler, H. Mena and A. Ostermann, Splitting methods for stochastic partial differential equations, preprint |
[28] |
N. Lang, H. Mena and J. Saak,
On the benefits of the LDL factorization for large-scale differential matrix equation solvers, Linear Algebra and its Applications, 480 (2015), 44-71.
|
[29] |
I. Lasiecka, Optimal control problems and Riccati equations for systems with unbounded
controls and partially analytic generators: applications to boundary and point control problems, in Functional Analytic Methods for Evolution Equations (eds. M. Iannelli, R. Nagel, S. Piazzera), Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1855 (2004), 313-369. |
[30] |
I. Lasiecka and R. Triggiani,
Control Theory for Partial Differential Equations: Continuous and Approximation Theories Ⅱ. Abstract Hyperbolic-like Systems over a Finite Time Horizon, Cambridge University Press, Cambridge, UK, 2000. |
[31] |
I. Lasiecka and A. Tuffaha,
Riccati equations for the Bolza problem arising in boundary/point control problems governed by $ C_{0} $-semigroups satisfying a singular estimate, J. Optim. Theory Appl., 136 (2008), 229-246.
|
[32] |
T. Levajković and H. Mena, On deterministic and stochastic linear quadratic control problem, in Current Trends in Analysis and Its Applications. Trends in Mathematics. (eds. V. Mityushev, M. Ruzhansky), Birkhäuser, Cham, (2015), 315-322. |
[33] |
T. Levajković, H. Mena and A. Tuffaha,
The stochastic linear quadratic control problem: A chaos expansion approach, Evolution Equations and Control Theory, 5 (2016), 105-134.
|
[34] |
T. Levajković, H. Mena and A. Tuffaha,
A numerical approximation framework for the stochastic linear quadratic regulator problem on Hilbert spaces, Applied Mathematics and Optimization, 75 (2017), 499-523.
|
[35] |
V. Mehrmann,
The Autonomous Linear Quadratic Control Problem, Springer-Verlag, Berlin, 1991. |
[36] |
J. Pedlosky,
Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. |
[37] |
I. Petersen, V. Ugrinovskii and A. Savkin,
Robust Control Design Using H∞ Methods, Springer-Verlag, London, 2000. |
show all references
References:
[1] |
H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank,
Matrix Riccati Equations in Control and Systems Theory, Birkhäuser, Basel, Switzerland, 2003. |
[2] |
A. H. Al-Mohy and N. J. Higham,
Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), 488-511.
|
[3] |
E. Arias, V. Hernández, J. Ibanes and J. Peinado,
A family of BDF algorithms for solving differential matrix Riccati equations using adaptive techniques, Procedia Computer Science, 1 (2010), 2569-2577.
|
[4] |
E. Armstrong,
An extension of Bass' algorithm for stabilizing linear continuous constant systems, IEEE Trans. Automatic Control, AC-20 (1975), 153-154.
|
[5] |
A. Balakrishnan,
Applied Functional Analysis, Springer-Verlag, New York, 1981. |
[6] |
H. Banks, R. Smith and Y. Wang,
The modeling of piezoceramic patch interactions with shells, plates and beams, Quart. Appl. Math., 53 (1995), 353-381.
|
[7] |
A. Bátkai, P. Csomós, B. Farkas and G. Nickel,
Operator splitting for non-autonomous evolution equations, J. Funct. Anal., 260 (2011), 2163-2192.
|
[8] |
A. Bátkai, P. Csomós and G. Nickel,
Operator splittings and spatial approximations for evolution equations, J. Evol. Eqs., 9 (2009), 613-636.
|
[9] |
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter,
Representation and Control of Infinite Dimensional Systems, Birkhäuser, 1993. |
[10] |
P. Benner, P. Ezzatti, H. Mena, E. S. Quintana-Ortí and A. Remón,
Solving matrix equations on multi-core and many-core architectures, Algorithms, 6 (2013), 857-870.
|
[11] |
P. Benner and H. Mena,
Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations, Journal of Numerical Mathematics (2016), in press. |
[12] |
P. Benner and H. Mena,
Rosenbrock methods for solving differential Riccati equations, IEEE Transactions on Automatic Control, 58 (2013), 2950-2957.
|
[13] |
P. Benner and J. Saak,
Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey, GAMM Mitteilungen, 36 (2013), 32-52.
|
[14] |
P. Csomós and J. Winckler,
A semigroup proof for the well-posedness of the linearised shallow water equations, J. Anal. Math., 43 (2017), 445-459.
|
[15] |
G. Da Prato,
Direct solution of a Riccati equation arising in stochastic control theory, Appl. Math. Optim., 11 (1984), 191-208.
|
[16] |
G. Da Prato, P. Kunstmann, I. Lasiecka, A. Lunardi, R. Schnaubelt and L. Weis,
Functional Analytic Methods for Evolution Equations, Springer-Verlag, Berlin, 2004. |
[17] |
K. Engel and R. Nagel,
One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. |
[18] |
F. Flandoli,
Direct solution of a Riccati equation arising in a stochastic control problem with control and observation on the boundary, Appl. Math. Optim., 14 (1986), 107-129.
|
[19] |
C. Hafizoglu, I. Lasiecka, T. Levajković, H. Mena and A. Tuffaha,
The stochastic linear quadratic problem with singular estimates, SIAM J. Control Optim., 55 (2017), 595-626.
|
[20] |
E. Hansen and A. Ostermann,
Exponential splitting for unbounded operators, Math. Comput., 78 (2009), 1485-1496.
|
[21] |
A. Ichikawa,
Dynamic programming approach to stochastic evolution equation, SIAM J. Control. Optim., 17 (1979), 152-174.
|
[22] |
A. Ichikawa and H. Katayama,
Remarks on the time-varying H∞ Riccati equations, Sys. Cont. Lett., 37 (1999), 335-345.
|
[23] |
O. Iftime and M. Opmeer, A representation of all bounded selfadjoint solutions of the algebraic Riccati equation for systems with an unbounded observation operator, Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, December 14-07 (2004), 2865-2870. |
[24] |
K. Ito and F. Kappel,
Evolution Equations and Approximations, World Scientific, Singapore, 2002. |
[25] |
T. Jahnke and Ch. Lubich,
Error bounds for exponential operator splittings, BIT, 40 (2000), 735-744.
|
[26] |
D. Kleinman,
On an iterative technique for Riccati equation computations, IEEE Trans. Automatic Control, AC-13 (1968), 114-115.
|
[27] |
A. Kofler, H. Mena and A. Ostermann, Splitting methods for stochastic partial differential equations, preprint |
[28] |
N. Lang, H. Mena and J. Saak,
On the benefits of the LDL factorization for large-scale differential matrix equation solvers, Linear Algebra and its Applications, 480 (2015), 44-71.
|
[29] |
I. Lasiecka, Optimal control problems and Riccati equations for systems with unbounded
controls and partially analytic generators: applications to boundary and point control problems, in Functional Analytic Methods for Evolution Equations (eds. M. Iannelli, R. Nagel, S. Piazzera), Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1855 (2004), 313-369. |
[30] |
I. Lasiecka and R. Triggiani,
Control Theory for Partial Differential Equations: Continuous and Approximation Theories Ⅱ. Abstract Hyperbolic-like Systems over a Finite Time Horizon, Cambridge University Press, Cambridge, UK, 2000. |
[31] |
I. Lasiecka and A. Tuffaha,
Riccati equations for the Bolza problem arising in boundary/point control problems governed by $ C_{0} $-semigroups satisfying a singular estimate, J. Optim. Theory Appl., 136 (2008), 229-246.
|
[32] |
T. Levajković and H. Mena, On deterministic and stochastic linear quadratic control problem, in Current Trends in Analysis and Its Applications. Trends in Mathematics. (eds. V. Mityushev, M. Ruzhansky), Birkhäuser, Cham, (2015), 315-322. |
[33] |
T. Levajković, H. Mena and A. Tuffaha,
The stochastic linear quadratic control problem: A chaos expansion approach, Evolution Equations and Control Theory, 5 (2016), 105-134.
|
[34] |
T. Levajković, H. Mena and A. Tuffaha,
A numerical approximation framework for the stochastic linear quadratic regulator problem on Hilbert spaces, Applied Mathematics and Optimization, 75 (2017), 499-523.
|
[35] |
V. Mehrmann,
The Autonomous Linear Quadratic Control Problem, Springer-Verlag, Berlin, 1991. |
[36] |
J. Pedlosky,
Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. |
[37] |
I. Petersen, V. Ugrinovskii and A. Savkin,
Robust Control Design Using H∞ Methods, Springer-Verlag, London, 2000. |



























[1] |
Berat Karaagac. Numerical treatment of Gray-Scott model with operator splitting method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2373-2386. doi: 10.3934/dcdss.2020143 |
[2] |
Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487 |
[3] |
Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806 |
[4] |
Alexander Tyatyushkin, Tatiana Zarodnyuk. Numerical method for solving optimal control problems with phase constraints. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 481-492. doi: 10.3934/naco.2017030 |
[5] |
Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29 (5) : 3429-3447. doi: 10.3934/era.2021046 |
[6] |
Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013 |
[7] |
Lijian Jiang, Craig C. Douglas. Analysis of an operator splitting method in 4D-Var. Conference Publications, 2009, 2009 (Special) : 394-403. doi: 10.3934/proc.2009.2009.394 |
[8] |
Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial and Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003 |
[9] |
Kamil Aida-Zade, Jamila Asadova. Numerical solution to optimal control problems of oscillatory processes. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021166 |
[10] |
Gengen Zhang. Time splitting combined with exponential wave integrator Fourier pseudospectral method for quantum Zakharov system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2587-2606. doi: 10.3934/dcdsb.2021149 |
[11] |
Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 |
[12] |
Radouen Ghanem, Billel Zireg. Numerical solution of bilateral obstacle optimal control problem, where the controls and the obstacles coincide. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 275-300. doi: 10.3934/naco.2020002 |
[13] |
Hamid Reza Marzban, Hamid Reza Tabrizidooz. Solution of nonlinear delay optimal control problems using a composite pseudospectral collocation method. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1379-1389. doi: 10.3934/cpaa.2010.9.1379 |
[14] |
Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41 |
[15] |
Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial and Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275 |
[16] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[17] |
Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4121-4141. doi: 10.3934/dcdsb.2021220 |
[18] |
Kangkang Deng, Zheng Peng, Jianli Chen. Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1881-1896. doi: 10.3934/jimo.2018127 |
[19] |
Tobias Breiten, Karl Kunisch, Laurent Pfeiffer. Numerical study of polynomial feedback laws for a bilinear control problem. Mathematical Control and Related Fields, 2018, 8 (3&4) : 557-582. doi: 10.3934/mcrf.2018023 |
[20] |
Yegana Ashrafova, Kamil Aida-Zade. Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3011-3033. doi: 10.3934/jimo.2019091 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]