-
Previous Article
Quantitative stability analysis of stochastic mathematical programs with vertical complementarity constraints
- NACO Home
- This Issue
-
Next Article
Optimization problems with orthogonal matrix constraints
On the cyclic pseudomonotonicity and the proximal point algorithm
1. | Department of Mathematics, University of Zanjan, P. O. Box 45195-313, Zanjan, Iran |
2. | Department of Mathematics, Institute for Advanced Studies in Basic Sciences, P. O. Box 45195-1159, Zanjan, Iran |
We introduce various versions of cyclic pseudomonotonicity and study the relations between them. Some examples about the relation between them and monotonicity are also presented. By imposing some assumptions on the cyclic pseudomonotone bifunctions, we study the convergence analysis of the proximal point algorithm which has been studied by Iusem and Sosa [
References:
[1] |
Z. Chbani and H. Riahi,
Existence and asymptotic behaviour for solution of dynamical equilibrium systems, Evol. Equ. Control Theory, 3 (2014), 1-14.
doi: 10.3934/eect.2014.3.1. |
[2] |
N. Hadjisavvas and H. Khatibzadeh,
Maximal monotonicity of bifunctions, Optimization, 59 (2010), 147-160.
doi: 10.1080/02331930801951116. |
[3] |
N. Hadjisavvas, S. Schaible and N. C. Wong,
Pseudomonotone operator: a survey of the theory and its applications, J. Optim. Theory Appl., 152 (2012), 1-20.
doi: 10.1007/s10957-011-9912-5. |
[4] |
A. N. Iusem, G. Kassay and W. Sosa,
On certain conditions for the existence of solutions of equilibrium problems, Math. Program., 116 (2009), 25-273.
doi: 10.1007/s10107-007-0125-5. |
[5] |
A. N. Iusem and W. Sosa,
On the proximal point method for equilibrium problems in Hilbert spaces, Optimization, 59 (2010), 1259-1274.
doi: 10.1080/02331931003603133. |
[6] |
H. Khatibzadeh, V. Mohebbi and S. Ranjbar,
Convergence analysis of the proximal point algorithm for pseudo-monotone equilibrium problems, Optim. Methods Softw., 30 (2015), 1146-1163.
doi: 10.1080/10556788.2015.1025402. |
[7] |
H. Khatibzadeh and V. Mohebbi,
Proximal point algorithm for infinite pseudo-monotone bifunctions, Optimization, 65 (2016), 1629-1639.
doi: 10.1080/02331934.2016.1153639. |
[8] |
B. Martinet,
Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle, 3 (1970), 154-158.
|
[9] |
L. E. Muu, V. H. Nguyen and N. V. Quy,
On Nash-Cournot oligopolistic market equilibrium models with concave cost functions, J. Global Optim., 41 (2008), 351-364.
doi: 10.1007/s10898-007-9243-0. |
[10] |
T. D. Quoc, P. N. Anh and L. D. Mu,
Dual extragradient algorithms extended to equilibrium problems, J. Global Optim., 52 (2012), 139-159.
doi: 10.1007/s10898-011-9693-2. |
[11] |
R. T. Rockafellar,
Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.
doi: 10.1137/0314056. |
show all references
References:
[1] |
Z. Chbani and H. Riahi,
Existence and asymptotic behaviour for solution of dynamical equilibrium systems, Evol. Equ. Control Theory, 3 (2014), 1-14.
doi: 10.3934/eect.2014.3.1. |
[2] |
N. Hadjisavvas and H. Khatibzadeh,
Maximal monotonicity of bifunctions, Optimization, 59 (2010), 147-160.
doi: 10.1080/02331930801951116. |
[3] |
N. Hadjisavvas, S. Schaible and N. C. Wong,
Pseudomonotone operator: a survey of the theory and its applications, J. Optim. Theory Appl., 152 (2012), 1-20.
doi: 10.1007/s10957-011-9912-5. |
[4] |
A. N. Iusem, G. Kassay and W. Sosa,
On certain conditions for the existence of solutions of equilibrium problems, Math. Program., 116 (2009), 25-273.
doi: 10.1007/s10107-007-0125-5. |
[5] |
A. N. Iusem and W. Sosa,
On the proximal point method for equilibrium problems in Hilbert spaces, Optimization, 59 (2010), 1259-1274.
doi: 10.1080/02331931003603133. |
[6] |
H. Khatibzadeh, V. Mohebbi and S. Ranjbar,
Convergence analysis of the proximal point algorithm for pseudo-monotone equilibrium problems, Optim. Methods Softw., 30 (2015), 1146-1163.
doi: 10.1080/10556788.2015.1025402. |
[7] |
H. Khatibzadeh and V. Mohebbi,
Proximal point algorithm for infinite pseudo-monotone bifunctions, Optimization, 65 (2016), 1629-1639.
doi: 10.1080/02331934.2016.1153639. |
[8] |
B. Martinet,
Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle, 3 (1970), 154-158.
|
[9] |
L. E. Muu, V. H. Nguyen and N. V. Quy,
On Nash-Cournot oligopolistic market equilibrium models with concave cost functions, J. Global Optim., 41 (2008), 351-364.
doi: 10.1007/s10898-007-9243-0. |
[10] |
T. D. Quoc, P. N. Anh and L. D. Mu,
Dual extragradient algorithms extended to equilibrium problems, J. Global Optim., 52 (2012), 139-159.
doi: 10.1007/s10898-011-9693-2. |
[11] |
R. T. Rockafellar,
Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.
doi: 10.1137/0314056. |
[1] |
Giuseppe Marino, Hong-Kun Xu. Convergence of generalized proximal point algorithms. Communications on Pure and Applied Analysis, 2004, 3 (4) : 791-808. doi: 10.3934/cpaa.2004.3.791 |
[2] |
Xin Zuo, Chun-Rong Chen, Hong-Zhi Wei. Solution continuity of parametric generalized vector equilibrium problems with strictly pseudomonotone mappings. Journal of Industrial and Management Optimization, 2017, 13 (1) : 477-488. doi: 10.3934/jimo.2016027 |
[3] |
Chibueze Christian Okeke, Abdulmalik Usman Bello, Lateef Olakunle Jolaoso, Kingsley Chimuanya Ukandu. Inertial method for split null point problems with pseudomonotone variational inequality problems. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021037 |
[4] |
Zaki Chbani, Hassan Riahi. Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 353-366. doi: 10.3934/naco.2013.3.353 |
[5] |
Xueling Zhou, Meixia Li, Haitao Che. Relaxed successive projection algorithm with strong convergence for the multiple-sets split equality problem. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2557-2572. doi: 10.3934/jimo.2020082 |
[6] |
Do Sang Kim, Nguyen Ngoc Hai, Bui Van Dinh. Weak convergence theorems for symmetric generalized hybrid mappings and equilibrium problems. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 63-78. doi: 10.3934/naco.2021051 |
[7] |
Zheng-Hai Huang, Shang-Wen Xu. Convergence properties of a non-interior-point smoothing algorithm for the P*NCP. Journal of Industrial and Management Optimization, 2007, 3 (3) : 569-584. doi: 10.3934/jimo.2007.3.569 |
[8] |
Jie Shen, Jian Lv, Fang-Fang Guo, Ya-Li Gao, Rui Zhao. A new proximal chebychev center cutting plane algorithm for nonsmooth optimization and its convergence. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1143-1155. doi: 10.3934/jimo.2018003 |
[9] |
Ram U. Verma. On the generalized proximal point algorithm with applications to inclusion problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 381-390. doi: 10.3934/jimo.2009.5.381 |
[10] |
Yu-Lin Chang, Jein-Shan Chen, Jia Wu. Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function. Journal of Industrial and Management Optimization, 2013, 9 (1) : 153-169. doi: 10.3934/jimo.2013.9.153 |
[11] |
Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial and Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333 |
[12] |
Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449 |
[13] |
Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537 |
[14] |
Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure and Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685 |
[15] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5567-5579. doi: 10.3934/dcdsb.2020367 |
[16] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control and Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[17] |
Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53 |
[18] |
Annamaria Barbagallo, Rosalba Di Vincenzo, Stéphane Pia. On strong Lagrange duality for weighted traffic equilibrium problem. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1097-1113. doi: 10.3934/dcds.2011.31.1097 |
[19] |
Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601 |
[20] |
Adela Capătă. Optimality conditions for strong vector equilibrium problems under a weak constraint qualification. Journal of Industrial and Management Optimization, 2015, 11 (2) : 563-574. doi: 10.3934/jimo.2015.11.563 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]