
-
Previous Article
A stochastic approach to model housing markets: The US housing market case
- NACO Home
- This Issue
-
Next Article
Quantitative stability analysis of stochastic mathematical programs with vertical complementarity constraints
Weighted vertices optimizer (WVO): A novel metaheuristic optimization algorithm
Department of electrical and computer engineering, University of Tabriz, Tabriz, Iran |
This paper introduces a novel optimization algorithm that is based on the basic idea underlying the bisection root-finding method in mathematics. The bisection method is modified for use as an optimizer by weighting each agent or vertex, and the algorithm developed from this process is called the weighted vertices optimizer (WVO). For exploitation and exploration, both swarm intelligence and evolution strategy are used to improve the accuracy and speed of WVO, which is then compared with six other popular optimization algorithms. Results confirm the superiority of WVO in most of the test functions.
References:
[1] |
M. Z. Ali, N. H. Awad, P. N. Suganthan and R. G. Reynolds,
A modified cultural algorithm with a balanced performance for the differential evolution frameworks, Knowledge-Based Systems, 111 (2016), 73-86.
doi: 10.1016/j.knosys.2016.08.005. |
[2] |
E. Atashpaz-Gargari and C. Lucas, Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition,
IEEE Congress on Evolutionary Computation, Singapore, 2007.
doi: 10.1109/CEC.2007.4425083. |
[3] |
R. L. Burden and J. D. Faires,
Numerical Analysis, 3rd edition, Prindle, Weber and Schmidt, 1985. |
[4] |
M. Dorigo, V. Maniezzo and A. Colorni,
Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26 (1996), 29-41.
doi: 10.1109/3477.484436. |
[5] |
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory,
the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
doi: 10.1109/MHS.1995.494215. |
[6] |
L. J. Fogel, A. J. Owens and M. J. Walsh,
Artificial Intelligence through Simulated Evolution, John Wiley and Sons, 1966.
doi: 10.1109/9780470544600.ch7. |
[7] |
D. E. Goldberg and J. H. Holland,
Genetic algorithms and machine learning, Machine Learning, 3 (1988), 95-99.
|
[8] |
Z.-L. Gaing,
A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Transactions on Energy Conversion, 19 (2004), 384-391.
doi: 10.1109/TEC.2003.821821. |
[9] |
Z. W. Geem, J. H. Kim and G. Loganathan,
A New Heuristic Optimization Algorithm: Harmony Search, Simulation, 76 (2001), 60-68.
|
[10] |
D. Karaboga and B. Basturk, Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems,
International Fuzzy Systems Association World Congress, 2007.
doi: 10.1007/s10898-007-9149-x. |
[11] |
E.-H. Kenane, F. Djahli and C. Dumond, A novel Modified Invasive Weeds Optimization for linear array antennas nulls control,
4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 2015.
doi: 10.1109/INTEE.2015.7416784. |
[12] |
J. Liang, P. Suganthan and K. Deb, Novel composition test functions for numerical global optimization,
Swarm Intelligence Symposium, Pasadena, CA, USA, 2005.
doi: 10.1109/SIS.2005.1501604. |
[13] |
A. Mehrabian and C. Lucas,
A novel numerical optimization algorithm inspired from weed colonization, Ecological Informatics, 1 (2006), 355-366.
doi: 10.1016/B978-0-12-416743-8.00001-4. |
[14] |
R. G. Reynolds, An Introduction to Cultural Algorithms,
3rd Annual Conference on Evolutionary Programming, 1994. |
[15] |
W. Xiang, M. An, Y. Li, R. He and J. Zhang,
An improved global-best harmony search algorithm for faster optimization, Expert Systems with Applications, 41 (2014), 788-803.
doi: 10.1016/j.eswa.2014.03.016. |
[16] |
X.-S. Yang,
Nature-Inspired Metaheuristic Algorithms: Second Edition, Luniver press, 2010. |
[17] |
A. E. M. Zavala, A. H. Aguirre and E. R. V. Diharce, Constrained optimization via particle evolutionary swarm optimization algorithm (PESO),
7th annual conference on Genetic and evolutionary computation, Washington DC, USA, 2005. |
show all references
References:
[1] |
M. Z. Ali, N. H. Awad, P. N. Suganthan and R. G. Reynolds,
A modified cultural algorithm with a balanced performance for the differential evolution frameworks, Knowledge-Based Systems, 111 (2016), 73-86.
doi: 10.1016/j.knosys.2016.08.005. |
[2] |
E. Atashpaz-Gargari and C. Lucas, Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition,
IEEE Congress on Evolutionary Computation, Singapore, 2007.
doi: 10.1109/CEC.2007.4425083. |
[3] |
R. L. Burden and J. D. Faires,
Numerical Analysis, 3rd edition, Prindle, Weber and Schmidt, 1985. |
[4] |
M. Dorigo, V. Maniezzo and A. Colorni,
Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26 (1996), 29-41.
doi: 10.1109/3477.484436. |
[5] |
R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory,
the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
doi: 10.1109/MHS.1995.494215. |
[6] |
L. J. Fogel, A. J. Owens and M. J. Walsh,
Artificial Intelligence through Simulated Evolution, John Wiley and Sons, 1966.
doi: 10.1109/9780470544600.ch7. |
[7] |
D. E. Goldberg and J. H. Holland,
Genetic algorithms and machine learning, Machine Learning, 3 (1988), 95-99.
|
[8] |
Z.-L. Gaing,
A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Transactions on Energy Conversion, 19 (2004), 384-391.
doi: 10.1109/TEC.2003.821821. |
[9] |
Z. W. Geem, J. H. Kim and G. Loganathan,
A New Heuristic Optimization Algorithm: Harmony Search, Simulation, 76 (2001), 60-68.
|
[10] |
D. Karaboga and B. Basturk, Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems,
International Fuzzy Systems Association World Congress, 2007.
doi: 10.1007/s10898-007-9149-x. |
[11] |
E.-H. Kenane, F. Djahli and C. Dumond, A novel Modified Invasive Weeds Optimization for linear array antennas nulls control,
4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 2015.
doi: 10.1109/INTEE.2015.7416784. |
[12] |
J. Liang, P. Suganthan and K. Deb, Novel composition test functions for numerical global optimization,
Swarm Intelligence Symposium, Pasadena, CA, USA, 2005.
doi: 10.1109/SIS.2005.1501604. |
[13] |
A. Mehrabian and C. Lucas,
A novel numerical optimization algorithm inspired from weed colonization, Ecological Informatics, 1 (2006), 355-366.
doi: 10.1016/B978-0-12-416743-8.00001-4. |
[14] |
R. G. Reynolds, An Introduction to Cultural Algorithms,
3rd Annual Conference on Evolutionary Programming, 1994. |
[15] |
W. Xiang, M. An, Y. Li, R. He and J. Zhang,
An improved global-best harmony search algorithm for faster optimization, Expert Systems with Applications, 41 (2014), 788-803.
doi: 10.1016/j.eswa.2014.03.016. |
[16] |
X.-S. Yang,
Nature-Inspired Metaheuristic Algorithms: Second Edition, Luniver press, 2010. |
[17] |
A. E. M. Zavala, A. H. Aguirre and E. R. V. Diharce, Constrained optimization via particle evolutionary swarm optimization algorithm (PESO),
7th annual conference on Genetic and evolutionary computation, Washington DC, USA, 2005. |


















C |
C |
C |
N |
V |
W |
W |
0.6 | 0.3 | 0.085 | 2 | 0.6 | 10 | 1 |
C |
C |
C |
N |
V |
W |
W |
0.6 | 0.3 | 0.085 | 2 | 0.6 | 10 | 1 |
ID | Name | Function | Bound | Global Min |
F1 | Shubert | -186.7309 | ||
F2 | Six-hump camel back | -1.0316285 | ||
F3 | Sphere | 0 | ||
F4 | Ackley | 0 | ||
F5 | Griewank | 0 | ||
F6 | Rastrigin | 0 |
ID | Name | Function | Bound | Global Min |
F1 | Shubert | -186.7309 | ||
F2 | Six-hump camel back | -1.0316285 | ||
F3 | Sphere | 0 | ||
F4 | Ackley | 0 | ||
F5 | Griewank | 0 | ||
F6 | Rastrigin | 0 |
Method | Cost value |
WVO | 1.78 E-15 |
PSO | 7.36 E-4 |
GA | 9.17 E-5 |
IWO | 2.157 |
HS | 2.56E-3 |
CA | 5.93E-6 |
mIWO | 1.23 E-5 |
mHS | 8.69 E-9 |
mCA | 5.12 E-10 |
Method | Cost value |
WVO | 1.78 E-15 |
PSO | 7.36 E-4 |
GA | 9.17 E-5 |
IWO | 2.157 |
HS | 2.56E-3 |
CA | 5.93E-6 |
mIWO | 1.23 E-5 |
mHS | 8.69 E-9 |
mCA | 5.12 E-10 |
WVO | PSO | GA | IWO | HS | CA | mIWO | mHS | mCA | ||
F1 | N1 | 13 | 45 | 27 | 184 | 88 | 47 | 132 | 44 | 23 |
B2 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | |
R3 | 1 | 5 | 3 | 9 | 7 | 6 | 8 | 4 | 2 | |
F2 | N | 19 | 50 | 24 | 54 | 60 | 24 | 39 | 45 | 20 |
B | -1.03163 | -1.03163 | -1.03163 | -1.03162 | -1.03162 | -1.03162 | -1.03162 | -1.03162 | -1.03162 | |
R | 1 | 7 | 3 | 8 | 9 | 3 | 5 | 6 | 2 | |
F3 | N | 77 | 1158 | 1500 | 1498 | 1501 | 1500 | 1382 | 1500 | 1500 |
B | 1.71 E-58 | 0 | 7.64 E-128 | 2.43 E-6 | 2 E-10 | 1.89 E-143 | 1.13 E-12 | 3.12E-8 | 0 | |
R | 5 | 1 | 4 | 9 | 7 | 3 | 6 | 8 | 2 | |
F4 | N | 67 | 233 | 199 | 198 | 1501 | 1336 | 173 | 1500 | 1363 |
B | 8.88 E-16 | 4.44 E-15 | 20 | 20 | 6.2 E-5 | 20.29 | 6.13 E-3 | 2.52 E-8 | 1.23 E-4 | |
R | 1 | 2 | 7 | 8 | 4 | 9 | 6 | 3 | 5 | |
F5 | N | 41 | 116 | 251 | 744 | 1501 | 468 | 632 | 432 | 321 |
B | 0 | 0.09747 | 0 | 0.90271 | 1.52 E-8 | 20.25 | 2.38 E-3 | 1.58 E-32 | 9.78 E-2 | |
R | 1 | 7 | 2 | 8 | 4 | 9 | 5 | 3 | 6 | |
F6 | N | 30 | 119 | 418 | 200 | 1501 | 1130 | 123 | 1245 | 1351 |
B | 0 | 5.9697 | 0 | 8.9552 | 4.06 E-10 | 22.94947 | 3.25 E-9 | 3.15 E-21 | 4.65 E-3 | |
R | 1 | 7 | 2 | 8 | 4 | 9 | 5 | 3 | 6 | |
R | 1 | 5 | 2 | 9 | 6 | 8 | 6 | 4 | 3 | |
1N:Number of iteration - 2B:Best cost value - 3R:Rank |
WVO | PSO | GA | IWO | HS | CA | mIWO | mHS | mCA | ||
F1 | N1 | 13 | 45 | 27 | 184 | 88 | 47 | 132 | 44 | 23 |
B2 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | -176.7309 | |
R3 | 1 | 5 | 3 | 9 | 7 | 6 | 8 | 4 | 2 | |
F2 | N | 19 | 50 | 24 | 54 | 60 | 24 | 39 | 45 | 20 |
B | -1.03163 | -1.03163 | -1.03163 | -1.03162 | -1.03162 | -1.03162 | -1.03162 | -1.03162 | -1.03162 | |
R | 1 | 7 | 3 | 8 | 9 | 3 | 5 | 6 | 2 | |
F3 | N | 77 | 1158 | 1500 | 1498 | 1501 | 1500 | 1382 | 1500 | 1500 |
B | 1.71 E-58 | 0 | 7.64 E-128 | 2.43 E-6 | 2 E-10 | 1.89 E-143 | 1.13 E-12 | 3.12E-8 | 0 | |
R | 5 | 1 | 4 | 9 | 7 | 3 | 6 | 8 | 2 | |
F4 | N | 67 | 233 | 199 | 198 | 1501 | 1336 | 173 | 1500 | 1363 |
B | 8.88 E-16 | 4.44 E-15 | 20 | 20 | 6.2 E-5 | 20.29 | 6.13 E-3 | 2.52 E-8 | 1.23 E-4 | |
R | 1 | 2 | 7 | 8 | 4 | 9 | 6 | 3 | 5 | |
F5 | N | 41 | 116 | 251 | 744 | 1501 | 468 | 632 | 432 | 321 |
B | 0 | 0.09747 | 0 | 0.90271 | 1.52 E-8 | 20.25 | 2.38 E-3 | 1.58 E-32 | 9.78 E-2 | |
R | 1 | 7 | 2 | 8 | 4 | 9 | 5 | 3 | 6 | |
F6 | N | 30 | 119 | 418 | 200 | 1501 | 1130 | 123 | 1245 | 1351 |
B | 0 | 5.9697 | 0 | 8.9552 | 4.06 E-10 | 22.94947 | 3.25 E-9 | 3.15 E-21 | 4.65 E-3 | |
R | 1 | 7 | 2 | 8 | 4 | 9 | 5 | 3 | 6 | |
R | 1 | 5 | 2 | 9 | 6 | 8 | 6 | 4 | 3 | |
1N:Number of iteration - 2B:Best cost value - 3R:Rank |
CF1 | CF2 | CF3 |
![]() |
![]() |
![]() |
CF1 | CF2 | CF3 |
![]() |
![]() |
![]() |
PSO [12] | DE [12] | GA | WVO | ||
CF1 | Mean | 1.7203 E2 | 1.4441 E2 | 1.3451 E2 | 1.1121 E2 |
Std. deviation | 3.2869 E1 | 1.9401 E1 | 1.9142 E1 | 1.4232 E1 | |
CF2 | Mean | 3.1430 E2 | 3.2486 E2 | 3.2314 E2 | 3.0021 E2 |
Std. deviation | 2.0006 E1 | 1.4784 E1 | 1.8154 E1 | 1.6823 E1 | |
CF3 | Mean | 8.3450 E1 | 1.0789 E1 | 7.5421 E1 | 3.8124 E1 |
Std. deviation | 1.0111 E2 | 2.6040 E0 | 1.0512 E1 | 8.5412 E1 |
PSO [12] | DE [12] | GA | WVO | ||
CF1 | Mean | 1.7203 E2 | 1.4441 E2 | 1.3451 E2 | 1.1121 E2 |
Std. deviation | 3.2869 E1 | 1.9401 E1 | 1.9142 E1 | 1.4232 E1 | |
CF2 | Mean | 3.1430 E2 | 3.2486 E2 | 3.2314 E2 | 3.0021 E2 |
Std. deviation | 2.0006 E1 | 1.4784 E1 | 1.8154 E1 | 1.6823 E1 | |
CF3 | Mean | 8.3450 E1 | 1.0789 E1 | 7.5421 E1 | 3.8124 E1 |
Std. deviation | 1.0111 E2 | 2.6040 E0 | 1.0512 E1 | 8.5412 E1 |
Parameter | value |
K |
10 |
0.1 | |
K |
1 |
0.4 | |
K |
1 |
1 | |
K |
1 |
0.01 |
Parameter | value |
K |
10 |
0.1 | |
K |
1 |
0.4 | |
K |
1 |
1 | |
K |
1 |
0.01 |
KP | KI | KD | RT | ST (sec) |
OS (%) |
Final error (%) |
Cost value | |
WVO | 0.600518 | 0.41376 | 0.20136 | 0.3101 | 0.5013 | 0.0003 | 0 | 3.11706 |
PSO | 0.600532 | 0.41386 | 0.20137 | 0.3141 | 0.5013 | 0.0017 | 0 | 3.11752 |
GA | 0.610065 | 0.42965 | 0.20784 | 0.3226 | 0.5005 | 0.1522 | 0.018 | 3.17785 |
KP | KI | KD | RT | ST (sec) |
OS (%) |
Final error (%) |
Cost value | |
WVO | 0.600518 | 0.41376 | 0.20136 | 0.3101 | 0.5013 | 0.0003 | 0 | 3.11706 |
PSO | 0.600532 | 0.41386 | 0.20137 | 0.3141 | 0.5013 | 0.0017 | 0 | 3.11752 |
GA | 0.610065 | 0.42965 | 0.20784 | 0.3226 | 0.5005 | 0.1522 | 0.018 | 3.17785 |
Function | C |
The best cost | Iteration | C |
The best cost | Iteration | C |
The best cost | Iteration | W |
The best cost | Iteration | W |
The best cost | Iteration |
F5 | 0.2 | 3.12E-12 | 46 | 0.2 | 0 | 43 | 0.02 | 0 | 73 | 2 | 0 | 47 | 2 | 0 | 41 |
0.4 | 2.02E-19 | 42 | 0.4 | 0 | 41 | 0.04 | 0 | 45 | 5 | 0 | 43 | 5 | 0 | 45 | |
0.6 | 0 | 42 | 0.6 | 0 | 42 | 0.06 | 0 | 45 | 10 | 0 | 42 | 10 | 0 | 47 | |
0.8 | 0 | 42 | 0.8 | 2.31E-26 | 43 | 0.08 | 0 | 41 | 15 | 0 | 42 | 15 | 0 | 47 | |
1 | 3.12E-30 | 44 | 1 | 8.64E-23 | 45 | 0.1 | 0 | 53 | 20 | 0 | 43 | 20 | 0 | 48 | |
F6 | 0.2 | 2.31E-6 | 45 | 0.2 | 0 | 41 | 0.02 | 2.31E-26 | 45 | 2 | 0 | 45 | 2 | 0 | 43 |
0.4 | 0 | 42 | 0.4 | 0 | 42 | 0.04 | 0 | 43 | 5 | 0 | 43 | 5 | 0 | 43 | |
0.6 | 0 | 42 | 0.6 | 1.12E-28 | 45 | 0.06 | 0 | 43 | 10 | 0 | 43 | 10 | 0 | 43 | |
0.8 | 0 | 45 | 0.8 | 6.78E-25 | 49 | 0.08 | 0 | 41 | 15 | 0 | 44 | 15 | 0 | 45 | |
1 | 0 | 45 | 1 | 1.32E-24 | 51 | 0.1 | 0 | 44 | 20 | 0 | 44 | 20 | 0 | 48 |
Function | C |
The best cost | Iteration | C |
The best cost | Iteration | C |
The best cost | Iteration | W |
The best cost | Iteration | W |
The best cost | Iteration |
F5 | 0.2 | 3.12E-12 | 46 | 0.2 | 0 | 43 | 0.02 | 0 | 73 | 2 | 0 | 47 | 2 | 0 | 41 |
0.4 | 2.02E-19 | 42 | 0.4 | 0 | 41 | 0.04 | 0 | 45 | 5 | 0 | 43 | 5 | 0 | 45 | |
0.6 | 0 | 42 | 0.6 | 0 | 42 | 0.06 | 0 | 45 | 10 | 0 | 42 | 10 | 0 | 47 | |
0.8 | 0 | 42 | 0.8 | 2.31E-26 | 43 | 0.08 | 0 | 41 | 15 | 0 | 42 | 15 | 0 | 47 | |
1 | 3.12E-30 | 44 | 1 | 8.64E-23 | 45 | 0.1 | 0 | 53 | 20 | 0 | 43 | 20 | 0 | 48 | |
F6 | 0.2 | 2.31E-6 | 45 | 0.2 | 0 | 41 | 0.02 | 2.31E-26 | 45 | 2 | 0 | 45 | 2 | 0 | 43 |
0.4 | 0 | 42 | 0.4 | 0 | 42 | 0.04 | 0 | 43 | 5 | 0 | 43 | 5 | 0 | 43 | |
0.6 | 0 | 42 | 0.6 | 1.12E-28 | 45 | 0.06 | 0 | 43 | 10 | 0 | 43 | 10 | 0 | 43 | |
0.8 | 0 | 45 | 0.8 | 6.78E-25 | 49 | 0.08 | 0 | 41 | 15 | 0 | 44 | 15 | 0 | 45 | |
1 | 0 | 45 | 1 | 1.32E-24 | 51 | 0.1 | 0 | 44 | 20 | 0 | 44 | 20 | 0 | 48 |
Function | N |
The best cost | Iteration |
F5 | 2 | 0 | 47 |
3 | 0 | 43 | |
4 | 0 | 42 | |
5 | 0 | 41 | |
10 | 0 | 43 | |
15 | 4.55E-8 | 116 | |
F5 | 2 | 0 | 45 |
3 | 0 | 43 | |
4 | 0 | 43 | |
5 | 0 | 44 | |
10 | 0 | 44 | |
15 | 0.406497 | 116 |
Function | N |
The best cost | Iteration |
F5 | 2 | 0 | 47 |
3 | 0 | 43 | |
4 | 0 | 42 | |
5 | 0 | 41 | |
10 | 0 | 43 | |
15 | 4.55E-8 | 116 | |
F5 | 2 | 0 | 45 |
3 | 0 | 43 | |
4 | 0 | 43 | |
5 | 0 | 44 | |
10 | 0 | 44 | |
15 | 0.406497 | 116 |
[1] |
Junjie Peng, Ning Chen, Jiayang Dai, Weihua Gui. A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1269-1287. doi: 10.3934/jimo.2020021 |
[2] |
Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066 |
[3] |
Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial and Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457 |
[4] |
Santanu Sarkar, Subhamoy Maitra. Some applications of lattice based root finding techniques. Advances in Mathematics of Communications, 2010, 4 (4) : 519-531. doi: 10.3934/amc.2010.4.519 |
[5] |
Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial and Management Optimization, 2012, 8 (2) : 469-484. doi: 10.3934/jimo.2012.8.469 |
[6] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[7] |
Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097 |
[8] |
Mohamed A. Tawhid, Kevin B. Dsouza. Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems. Mathematical Foundations of Computing, 2018, 1 (2) : 181-200. doi: 10.3934/mfc.2018009 |
[9] |
Wenxing Zhu, Yanpo Liu, Geng Lin. Speeding up a memetic algorithm for the max-bisection problem. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 151-168. doi: 10.3934/naco.2015.5.151 |
[10] |
Roya Soltani, Seyed Jafar Sadjadi, Mona Rahnama. Artificial intelligence combined with nonlinear optimization techniques and their application for yield curve optimization. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1701-1721. doi: 10.3934/jimo.2017014 |
[11] |
Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani. Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 633-644. doi: 10.3934/naco.2021001 |
[12] |
Yunmei Chen, Xiaojing Ye, Feng Huang. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Problems and Imaging, 2010, 4 (2) : 223-240. doi: 10.3934/ipi.2010.4.223 |
[13] |
Tao Zhang, Yue-Jie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture. Journal of Industrial and Management Optimization, 2011, 7 (1) : 31-51. doi: 10.3934/jimo.2011.7.31 |
[14] |
Maolin Cheng, Zhun Cheng. A novel simultaneous grey model parameter optimization method and its application to predicting private car ownership and transportation economy. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022081 |
[15] |
Qiang Long, Changzhi Wu. A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1279-1296. doi: 10.3934/jimo.2014.10.1279 |
[16] |
Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks and Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631 |
[17] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[18] |
Jinyuan Zhang, Aimin Zhou, Guixu Zhang, Hu Zhang. A clustering based mate selection for evolutionary optimization. Big Data & Information Analytics, 2017, 2 (1) : 77-85. doi: 10.3934/bdia.2017010 |
[19] |
Barbara Kaltenbacher, Jonas Offtermatt. A refinement and coarsening indicator algorithm for finding sparse solutions of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 391-406. doi: 10.3934/ipi.2011.5.391 |
[20] |
Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]