# American Institute of Mathematical Sciences

June  2019, 9(2): 225-256. doi: 10.3934/naco.2019016

## Indirect methods for fuel-minimal rendezvous with a large population of temporarily captured orbiters

 1 Department of Mathematics, University of Hawaii at Manoa, 2565 McCarthy Mall, Honolulu, Hawaii 96822, USA 2 Department of Computational Medicine and Bioinformatics, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48105, USA

* Corresponding author: Monique Chyba

The paper is handled by Leong Wah June as the guest editor.

Received  December 2015 Revised  October 2018 Published  January 2019

Fund Project: This research is partially supported by the National Science Foundation (NSF) Division of Mathematical Sciences, award DMS-1109937, NSF Division of of Graduate Education, award DGE-0841223 and by the NASA, proposal Institute for the Science of Exploration Targets from the program Solar System Exploration Research Virtual Institute.

A main objective of this work is to assess the feasibility of space missions to a new population of near Earth asteroids which temporarily orbit Earth, called temporarily captured orbiter. We design rendezvous missions to a large random sample from a database of over 16,000 simulated temporarily captured orbiters using an indirect method based on the maximum principle. The main contribution of this paper is the development of techniques to overcome the difficulty in initializing the algorithm with the construction of the so-called cloud of extremals.

Citation: Monique Chyba, Geoff Patterson. Indirect methods for fuel-minimal rendezvous with a large population of temporarily captured orbiters. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 225-256. doi: 10.3934/naco.2019016
##### References:

show all references

The paper is handled by Leong Wah June as the guest editor.

##### References:
], plotted in the inertial Earth-Moon (EM)-barycentric reference frame">Figure 1.  Simulated TCOs orbits from the database calculated in [11], plotted in the inertial Earth-Moon (EM)-barycentric reference frame
The distribution of TCOs capture times less than 3 years
Distributions of the periapsis distances for all 16,923 temporarily captured orbiter, with respect to the Earth (perigee), Moon (perilune), $L_1$ (peri-$L_1$), and $L_2$ (peri-$L_2$)
Fixed control structure
$\Delta v$ (m/s) vs. total thrusting time $\tau$ (hours)
Rendezvous points (small white dots) for TCO #1. Also shown are vectors indicating the direction of the velocity of the spacecraft and direction of the Sun for each rendezvous point
Rendezvous points (in white) for TCOs #1-100 (right). These are still only a small portion of all the rendezvous points $\mathbf{q}_{rdvz}$ we consider for the 16,923 minimoons
Example of cloud extremal construction. In plain, our constructed trajectory. In dashed, the resulting cloud extremal. The Earth (left) and Moon (right) are shown as black circles, and the CR3BP equilibrium points $L_i$ are plotted for reference as x's
Control structure for constructing cloud extremals
The Halo orbit discretized into 100 equally spaced (in terms of time) points
Delta-v distribution for the 12,558 cloud elements
Transfer time distribution for the 12,558 cloud elements
Initial Sun true anomaly distribution for the 12,558 cloud elements
Positions $\mathbf{s}_{cloud}$ of cloud points $\mathbf{q}_{cloud}$ for the 12,558 cloud elements, shown at different zoom levels
Distribution of TCO cloud distances (LD, position only). Left: all TCOs, Right: truncated for distances less than 0.5 LD only
Distribution of TCO cloud distances (non-dimensional, position and velocity)
Initial results: Distribution of Δv for 1,338 computed transfers
Initial results: Rendezvous with TCO #9. The Moon's orbit is shown as the ellipse around the Earth (gray dot). The thin grey path is the orbit of the TCO, starting from its capture point (triangle) to its escape point (square). The circle on the TCO orbit marks where the TCO was when the craft departed, and the star is the point of rendezvous. The dark gray path is the spacecraft's trajectory. It's three boosts are marked as white dots (including the final rendezvous boost)
">Figure 19.  Initial results: Rendezvous with minimoon #14. The legend is the same as for Figure 18
Initial results: Distribution of $\Delta v$ for the best computed transfers for 93 minimoons
Initial results: Position components of $\mathbf{q}_{rdvz}$ versus $\Delta v$
Initial results: Velocity components of $\mathbf{q}_{rdvz}$ versus $\Delta v$
Initial results: CR3BP Energy at $\mathbf{q}_{rdvz}$ versus $\Delta v$
Initial results: CR3BP Energy at $\mathbf{q}_{cloud}$ versus resulting $\Delta v$
Initial results: Transfer times versus $\Delta v$
Initial results: Continuation distance versus $\Delta v$
Initial results: Continuation final Sun true anomaly difference versus $\Delta v$
Large scale results: Distribution of $\Delta v$ for the 3,000 TCOs
Large scale results: Rendezvous with minimoon #9,046
Large scale results: Rendezvous with minimoon #16,844
Original (left) and refined (right) rendezvous with minimoon #5
Refined results: distribution of $\Delta v$ improvement for 93 TCOs
Original (left) and refined (right) rendezvous with TCO #40
Original (left) and refined (right) rendezvous with TCO #9,046
Numerical values for the CR3BP and the CR4BP
 CR3BP parameters CR4BP parameters $\mu$ $1.2153\cdot 10^{-1}$ $\mu_S$ $3.289\cdot 10^5$ 1 norm. dist. (LD) $384400$ km $r_S$ $3.892\cdot 10^2$ 1 norm. time $104.379$ h $\omega_S$ $-0.925$ rad/norm. time
 CR3BP parameters CR4BP parameters $\mu$ $1.2153\cdot 10^{-1}$ $\mu_S$ $3.289\cdot 10^5$ 1 norm. dist. (LD) $384400$ km $r_S$ $3.892\cdot 10^2$ 1 norm. time $104.379$ h $\omega_S$ $-0.925$ rad/norm. time
Comparison of chosen values $t_i$ versus solution values $t_i^*$. Units are in hours
 $t_1$ $t_2$ $t_3$ $t_4$ 1.00 240.00 241.00 479.00 $t_1^*$ $t_2^*$ $t_3^*$ $t_4^*$ 0.42 265.64 266.43 478.62
 $t_1$ $t_2$ $t_3$ $t_4$ 1.00 240.00 241.00 479.00 $t_1^*$ $t_2^*$ $t_3^*$ $t_4^*$ 0.42 265.64 266.43 478.62
Comparison of chosen values $\mathbf{P}(0)$ versus solution values $\mathbf{P}(0)^*$
 $p_x(0)$ $p_y(0)$ $p_z(0)$ $p_{\dot{x}}(0)$ $p_{\dot{y}}(0)$ $p_{\dot{z}}(0)$ $p_m(0)$ 0.0059 -0.0022 -0.0075 -0.0026 0.0051 -0.0070 -0.0000089 $p_x^*(0)$ $p_y^*(0)$ $p_z^*(0)$ $p_{\dot{x}}^*(0)$ $p_{\dot{y}}^*(0)$ $p_{\dot{z}}^*(0)$ $p_m^*(0)$ 0.1029 -0.0144 -0.0323 0.0116 0.0301 0.0015 -0.000071
 $p_x(0)$ $p_y(0)$ $p_z(0)$ $p_{\dot{x}}(0)$ $p_{\dot{y}}(0)$ $p_{\dot{z}}(0)$ $p_m(0)$ 0.0059 -0.0022 -0.0075 -0.0026 0.0051 -0.0070 -0.0000089 $p_x^*(0)$ $p_y^*(0)$ $p_z^*(0)$ $p_{\dot{x}}^*(0)$ $p_{\dot{y}}^*(0)$ $p_{\dot{z}}^*(0)$ $p_m^*(0)$ 0.1029 -0.0144 -0.0323 0.0116 0.0301 0.0015 -0.000071
Initial results: Winding number pairs and corresponding $\Delta v$ statistics for 1,338 transfers
 $w_e$ $w_m$ count mean $\Delta v$ median $\Delta v$ min $\Delta v$ max $\Delta v$ -1 -1 640 919.6 891.6 255.9 2171.2 -2 -2 241 1003.7 956.5 195.6 4850.1 0 0 78 977.0 889.9 428.9 2241.0 -3 -3 54 1044.9 857.5 354.1 3753.0 1 1 48 1030.3 864.2 782.5 2886.7 -1 0 39 781.4 788.4 269.5 1259.0 -5 -5 28 633.7 502.5 368.6 959.9 -2 -1 24 919.3 893.7 387.8 1468.1 -4 -4 22 1478.8 1000.8 397.1 2947.7 0 1 22 1891.7 2059.4 898.6 2480.2 -2 -3 21 1034.6 937.0 410.3 2033.3 -1 -2 18 1042.9 987.1 409.4 1855.2 -4 -3 15 1579.3 1460.0 775.5 2767.9 0 -1 13 1018.2 1019.4 462.9 1524.1 2 0 13 2788.0 3113.7 683.6 3160.3 -4 -5 10 2207.8 2201.8 2163.5 2264.7 -5 -4 6 851.0 795.7 740.2 1116.2 -3 -4 6 1361.4 1474.7 574.1 1695.3 -3 -2 5 1163.4 1361.2 388.0 1438.9 -2 2 4 906.0 900.5 846.6 976.4 -6 -4 3 886.8 883.0 632.3 1145.0 -3 -1 3 1924.5 1926.2 1909.6 1937.6 -1 1 3 898.1 753.7 641.6 1298.9 3 1 3 1363.8 1363.8 1363.8 1363.8 -18 2 2 3072.1 3072.1 3063.3 3081.0 -1 -3 2 1723.9 1723.9 1653.3 1794.5 2 -1 2 902.9 902.9 559.6 1246.2 2 1 2 1089.8 1089.8 1048.6 1131.0 3 0 2 1090.1 1090.1 813.0 1367.1 11 2 2 5735.4 5735.4 5015.0 6455.7 -5 -3 1 700.9 700.9 700.9 700.9 -4 -2 1 857.7 857.7 857.7 857.7 -2 0 1 710.7 710.7 710.7 710.7 4 3 1 1447.7 1447.7 1447.7 1447.7 6 1 1 1351.3 1351.3 1351.3 1351.3 7 1 1 1165.2 1165.2 1165.2 1165.2 8 1 1 1095.6 1095.6 1095.6 1095.6
 $w_e$ $w_m$ count mean $\Delta v$ median $\Delta v$ min $\Delta v$ max $\Delta v$ -1 -1 640 919.6 891.6 255.9 2171.2 -2 -2 241 1003.7 956.5 195.6 4850.1 0 0 78 977.0 889.9 428.9 2241.0 -3 -3 54 1044.9 857.5 354.1 3753.0 1 1 48 1030.3 864.2 782.5 2886.7 -1 0 39 781.4 788.4 269.5 1259.0 -5 -5 28 633.7 502.5 368.6 959.9 -2 -1 24 919.3 893.7 387.8 1468.1 -4 -4 22 1478.8 1000.8 397.1 2947.7 0 1 22 1891.7 2059.4 898.6 2480.2 -2 -3 21 1034.6 937.0 410.3 2033.3 -1 -2 18 1042.9 987.1 409.4 1855.2 -4 -3 15 1579.3 1460.0 775.5 2767.9 0 -1 13 1018.2 1019.4 462.9 1524.1 2 0 13 2788.0 3113.7 683.6 3160.3 -4 -5 10 2207.8 2201.8 2163.5 2264.7 -5 -4 6 851.0 795.7 740.2 1116.2 -3 -4 6 1361.4 1474.7 574.1 1695.3 -3 -2 5 1163.4 1361.2 388.0 1438.9 -2 2 4 906.0 900.5 846.6 976.4 -6 -4 3 886.8 883.0 632.3 1145.0 -3 -1 3 1924.5 1926.2 1909.6 1937.6 -1 1 3 898.1 753.7 641.6 1298.9 3 1 3 1363.8 1363.8 1363.8 1363.8 -18 2 2 3072.1 3072.1 3063.3 3081.0 -1 -3 2 1723.9 1723.9 1653.3 1794.5 2 -1 2 902.9 902.9 559.6 1246.2 2 1 2 1089.8 1089.8 1048.6 1131.0 3 0 2 1090.1 1090.1 813.0 1367.1 11 2 2 5735.4 5735.4 5015.0 6455.7 -5 -3 1 700.9 700.9 700.9 700.9 -4 -2 1 857.7 857.7 857.7 857.7 -2 0 1 710.7 710.7 710.7 710.7 4 3 1 1447.7 1447.7 1447.7 1447.7 6 1 1 1351.3 1351.3 1351.3 1351.3 7 1 1 1165.2 1165.2 1165.2 1165.2 8 1 1 1095.6 1095.6 1095.6 1095.6
 [1] Ugo Locatelli, Antonio Giorgilli. Invariant tori in the Sun--Jupiter--Saturn system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 377-398. doi: 10.3934/dcdsb.2007.7.377 [2] Jaume Llibre, Ricardo Miranda Martins, Marco Antonio Teixeira. On the birth of minimal sets for perturbed reversible vector fields. Discrete & Continuous Dynamical Systems, 2011, 31 (3) : 763-777. doi: 10.3934/dcds.2011.31.763 [3] Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375 [4] Frederic Gabern, Àngel Jorba. A restricted four-body model for the dynamics near the Lagrangian points of the Sun-Jupiter system. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 143-182. doi: 10.3934/dcdsb.2001.1.143 [5] Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 [6] W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893 [7] Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328 [8] Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6419-6444. doi: 10.3934/dcdsb.2019145 [9] Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 [10] Genglin Li, Youshan Tao, Michael Winkler. Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4383-4396. doi: 10.3934/dcdsb.2020102 [11] Farah Abdallah, Mouhammad Ghader, Ali Wehbe, Yacine Chitour. Optimal indirect stability of a weakly damped elastic abstract system of second order equations coupled by velocities. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2789-2818. doi: 10.3934/cpaa.2019125 [12] Brittany Froese Hamfeldt, Jacob Lesniewski. A convergent finite difference method for computing minimal Lagrangian graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021182 [13] Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076 [14] Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496 [15] Noui Djaidja, Mostefa Nadir. Comparison between Taylor and perturbed method for Volterra integral equation of the first kind. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 487-493. doi: 10.3934/naco.2020039 [16] Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354 [17] Yavdat Il'yasov, Nadir Sari. Solutions of minimal period for a Hamiltonian system with a changing sign potential. Communications on Pure & Applied Analysis, 2005, 4 (1) : 175-185. doi: 10.3934/cpaa.2005.4.175 [18] Mounir Balti, Ramzi May. Asymptotic for the perturbed heavy ball system with vanishing damping term. Evolution Equations & Control Theory, 2017, 6 (2) : 177-186. doi: 10.3934/eect.2017010 [19] Alexandru Kristály, Ildikó-Ilona Mezei. Multiple solutions for a perturbed system on strip-like domains. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 789-796. doi: 10.3934/dcdss.2012.5.789 [20] Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199

Impact Factor:

## Metrics

• HTML views (568)
• Cited by (0)

• on AIMS