
-
Previous Article
Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems
- NACO Home
- This Issue
-
Next Article
A resilient convex combination for consensus-based distributed algorithms
Optimal sparse output feedback for networked systems with parametric uncertainties
1. | School of Electrical Engineering and Telecommunications, University of New South Wales, NSW 2052 Australia |
2. | Faculty of Engineering and Information Technology, University of Technology, Sydney (UTS), PO Box 123, Broadway, NSW 2007, Australia |
This paper investigates the design of block row/column-sparse distributed static output ${H}_2$ feedback control for interconnected systems with polytopic uncertainties. The proposed approach is applicable to the networked systems with publisher/subscriber communication topology. We added two additional terms into the optimisation index function to penalise the number of publishers and subscribers. To optimally select a subset of available publishers and/or subscribers in the network, we introduced both an explicit scheme and an iterative process to handle this problem. We demonstrated the effectiveness by using a numerical example. The example showed that the simultaneous identification of favourable networks topologies and design of controller strategy can be achieved by using the proposed method.
References:
[1] |
R. Arastoo, Y. GhaedSharaf, M. V. Kothare and N. Motee, Optimal state feedback controllers with strict row sparsity constraints, in American Control Conference (ACC), IEEE, (2016), 1948–1953. |
[2] |
A. Argha, S. W. Su, A. Savkin and B. Celler,
A framework for optimal actuator/sensor selection in a control system, International Journal of Control, 92 (2019), 242-260.
doi: 10.1080/00207179.2017.1350755. |
[3] |
A. Argha, S. W. Su and A. Savkin, Optimal actuator/sensor selection through dynamic output feedback, in Decision and Control (CDC), IEEE, (2016), 3624–3629. |
[4] |
A. Argha, L. Li and S. W. Su,
Design of $H_2$ ($H_{\infty}$)-based optimal structured and sparse static output feedback gains, Journal of the Franklin Institute, 354 (2017), 4156-4178.
doi: 10.1016/j.jfranklin.2017.03.011. |
[5] |
A. Argha, S. W. Su, A. Savkin and B. G. Celler,
Mixed $H_2/H_{\infty}$-based actuator selection for uncertain polytopic systems with regional pole placement, International Journal of Control, 91 (2018), 320-336.
doi: 10.1080/00207179.2017.1279753. |
[6] |
A. Argha, L. Li and S. W. Su,
$H_2$-based optimal sparse sliding mode control for networked control systems, International Journal of Robust and Nonlinear Control, 28 (2018), 16-30.
doi: 10.1002/rnc.3852. |
[7] |
E. J. Candes, M. B. Wakin and S. P. Boyd,
Enhancing sparsity by reweighted $\ell_1$ minimization, Journal of Fourier Analysis and Applications, 14 (2008), 877-905.
doi: 10.1007/s00041-008-9045-x. |
[8] |
M. Fardad, F. Lin and M. R. Jovanovic, Sparsity-promoting optimal control for a class of distributed systems, in Proc. the American Control Conference, San Francisco, CA, USA, (2011), 2050–2055. |
[9] |
M. Fardad and M. R. Jovanovic, On the design of optimal structured and sparse feedback gains via sequential convex programming, in American Control Conference (ACC), IEEE, (2014), 2426–2431. |
[10] |
F. Lin, M. Fardad and M. Jovanovic,
Augmented lagrangian approach to design of structured optimal state feedback gains, IEEE Trans. Autom. Control, 56 (2011), 2923-2929.
doi: 10.1109/TAC.2011.2160022. |
[11] |
G. Pipeleers, B. Demeulenaere, J. Swevers and L. Vandenberghe,
Extended LMI characterizations for stability and performance of linear systems, Systems & Control Letters, 58 (2009), 510-518.
doi: 10.1016/j.sysconle.2009.03.001. |
[12] |
M. Razeghi-Jahromi and A. Seyedi,
Stabilization of networked control systems with sparse observer-controller networks, IEEE Transactions on Automatic Control, 60 (2015), 1686-1691.
doi: 10.1109/TAC.2014.2360310. |
[13] |
J. Rubió-Massegú, J. M. Rossell, H. R. Karimi and F. Palacios-Quiñonero,
Static output-feedback control under information structure constraints, Automatica, 49 (2013), 313-316.
doi: 10.1016/j.automatica.2012.10.012. |
[14] |
D. D. Šiljak and A. Zečević,
Control of large-scale systems: Beyond decentralized feedback, Annual Reviews in Control, 29 (2005), 169-179.
|
[15] |
D. Siljak, Decentralized Control of Complex Systems, Dover Publications, 2012. |
[16] |
M. Staroswiecki and A. M. Amani, Fault-tolerant control of distributed systems by information pattern reconfiguration, International Journal of Adaptive Control and Signal Processing, 2014.
doi: 10.1002/acs.2497. |
[17] |
S. Schuler, U. Münz and F. Allgöwer,
Decentralized state feedback control for interconnected systems with application to power systems, Journal of Process Control, 24 (2014), 379-388.
|
[18] |
M. Van De Wal and B. De Jager,
A review of methods for input/output selection, Automatica, 37 (2001), 487-510.
doi: 10.1016/S0005-1098(00)00181-3. |
[19] |
X. Wang and M. Lemmon,
Event-triggering in distributed networked control systems, IEEE Transactions on Automatic Control, 56 (2011), 586-601.
doi: 10.1109/TAC.2010.2057951. |
[20] |
A. Zecevic and D. Siljak,
Global low-rank enhancement of decentralized control for large-scale systems, IEEE Transactions on Automatic Control, 50 (2005), 740-744.
doi: 10.1109/TAC.2005.847054. |
[21] |
D. M. Zoltowski, N. Dhingra, F. Lin and M. R. Jovanovic, Sparsity-promoting optimal control of spatially-invariant systems, in American Control Conference (ACC) IEEE, (2014), 1255–1260. |
show all references
References:
[1] |
R. Arastoo, Y. GhaedSharaf, M. V. Kothare and N. Motee, Optimal state feedback controllers with strict row sparsity constraints, in American Control Conference (ACC), IEEE, (2016), 1948–1953. |
[2] |
A. Argha, S. W. Su, A. Savkin and B. Celler,
A framework for optimal actuator/sensor selection in a control system, International Journal of Control, 92 (2019), 242-260.
doi: 10.1080/00207179.2017.1350755. |
[3] |
A. Argha, S. W. Su and A. Savkin, Optimal actuator/sensor selection through dynamic output feedback, in Decision and Control (CDC), IEEE, (2016), 3624–3629. |
[4] |
A. Argha, L. Li and S. W. Su,
Design of $H_2$ ($H_{\infty}$)-based optimal structured and sparse static output feedback gains, Journal of the Franklin Institute, 354 (2017), 4156-4178.
doi: 10.1016/j.jfranklin.2017.03.011. |
[5] |
A. Argha, S. W. Su, A. Savkin and B. G. Celler,
Mixed $H_2/H_{\infty}$-based actuator selection for uncertain polytopic systems with regional pole placement, International Journal of Control, 91 (2018), 320-336.
doi: 10.1080/00207179.2017.1279753. |
[6] |
A. Argha, L. Li and S. W. Su,
$H_2$-based optimal sparse sliding mode control for networked control systems, International Journal of Robust and Nonlinear Control, 28 (2018), 16-30.
doi: 10.1002/rnc.3852. |
[7] |
E. J. Candes, M. B. Wakin and S. P. Boyd,
Enhancing sparsity by reweighted $\ell_1$ minimization, Journal of Fourier Analysis and Applications, 14 (2008), 877-905.
doi: 10.1007/s00041-008-9045-x. |
[8] |
M. Fardad, F. Lin and M. R. Jovanovic, Sparsity-promoting optimal control for a class of distributed systems, in Proc. the American Control Conference, San Francisco, CA, USA, (2011), 2050–2055. |
[9] |
M. Fardad and M. R. Jovanovic, On the design of optimal structured and sparse feedback gains via sequential convex programming, in American Control Conference (ACC), IEEE, (2014), 2426–2431. |
[10] |
F. Lin, M. Fardad and M. Jovanovic,
Augmented lagrangian approach to design of structured optimal state feedback gains, IEEE Trans. Autom. Control, 56 (2011), 2923-2929.
doi: 10.1109/TAC.2011.2160022. |
[11] |
G. Pipeleers, B. Demeulenaere, J. Swevers and L. Vandenberghe,
Extended LMI characterizations for stability and performance of linear systems, Systems & Control Letters, 58 (2009), 510-518.
doi: 10.1016/j.sysconle.2009.03.001. |
[12] |
M. Razeghi-Jahromi and A. Seyedi,
Stabilization of networked control systems with sparse observer-controller networks, IEEE Transactions on Automatic Control, 60 (2015), 1686-1691.
doi: 10.1109/TAC.2014.2360310. |
[13] |
J. Rubió-Massegú, J. M. Rossell, H. R. Karimi and F. Palacios-Quiñonero,
Static output-feedback control under information structure constraints, Automatica, 49 (2013), 313-316.
doi: 10.1016/j.automatica.2012.10.012. |
[14] |
D. D. Šiljak and A. Zečević,
Control of large-scale systems: Beyond decentralized feedback, Annual Reviews in Control, 29 (2005), 169-179.
|
[15] |
D. Siljak, Decentralized Control of Complex Systems, Dover Publications, 2012. |
[16] |
M. Staroswiecki and A. M. Amani, Fault-tolerant control of distributed systems by information pattern reconfiguration, International Journal of Adaptive Control and Signal Processing, 2014.
doi: 10.1002/acs.2497. |
[17] |
S. Schuler, U. Münz and F. Allgöwer,
Decentralized state feedback control for interconnected systems with application to power systems, Journal of Process Control, 24 (2014), 379-388.
|
[18] |
M. Van De Wal and B. De Jager,
A review of methods for input/output selection, Automatica, 37 (2001), 487-510.
doi: 10.1016/S0005-1098(00)00181-3. |
[19] |
X. Wang and M. Lemmon,
Event-triggering in distributed networked control systems, IEEE Transactions on Automatic Control, 56 (2011), 586-601.
doi: 10.1109/TAC.2010.2057951. |
[20] |
A. Zecevic and D. Siljak,
Global low-rank enhancement of decentralized control for large-scale systems, IEEE Transactions on Automatic Control, 50 (2005), 740-744.
doi: 10.1109/TAC.2005.847054. |
[21] |
D. M. Zoltowski, N. Dhingra, F. Lin and M. R. Jovanovic, Sparsity-promoting optimal control of spatially-invariant systems, in American Control Conference (ACC) IEEE, (2014), 1255–1260. |


[1] |
Xingyue Liang, Jianwei Xia, Guoliang Chen, Huasheng Zhang, Zhen Wang. $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1329-1343. doi: 10.3934/dcdss.2020368 |
[2] |
Liqiang Jin, Yanyan Yin, Kok Lay Teo, Fei Liu. Event-triggered mixed $ H_\infty $ and passive control for Markov jump systems with bounded inputs. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1343-1355. doi: 10.3934/jimo.2020024 |
[3] |
Junlin Xiong, Wenjie Liu. $ H_{\infty} $ observer-based control for large-scale systems with sparse observer communication network. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 331-343. doi: 10.3934/naco.2020005 |
[4] |
Ramalingam Sakthivel, Palanisamy Selvaraj, Yeong-Jae Kim, Dong-Hoon Lee, Oh-Min Kwon, Rathinasamy Sakthivel. Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022028 |
[5] |
Zhaoxia Duan, Jinling Liang, Zhengrong Xiang. $ H_{\infty} $ control for continuous-discrete systems in T-S fuzzy model with finite frequency specifications. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022064 |
[6] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004 |
[7] |
Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075 |
[8] |
Shengbing Deng. Construction solutions for Neumann problem with Hénon term in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2233-2253. doi: 10.3934/dcds.2019094 |
[9] |
Lakehal Belarbi. Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group. Electronic Research Archive, 2020, 28 (1) : 157-163. doi: 10.3934/era.2020010 |
[10] |
Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1131-1143. doi: 10.3934/dcdss.2020067 |
[11] |
Dongyi Liu, Genqi Xu. Input-output $ L^2 $-well-posedness, regularity and Lyapunov stability of string equations on networks. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022007 |
[12] |
Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial and Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035 |
[13] |
Raina Raj, Vidyottama Jain. Optimization of traffic control in $ MMAP\mathit{[2]}/PH\mathit{[2]}/S$ priority queueing model with $ PH $ retrial times and the preemptive repeat policy. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022044 |
[14] |
Rong Zhang. Nonexistence of Positive Solutions for high-order Hardy-H$ \acute{e} $non Systems on $ \mathbb{R}^{n} $. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2857-2872. doi: 10.3934/cpaa.2022078 |
[15] |
Kwangseok Choe, Hyungjin Huh. Chern-Simons gauged sigma model into $ \mathbb{H}^2 $ and its self-dual equations. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4613-4646. doi: 10.3934/dcds.2019189 |
[16] |
Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations and Control Theory, 2021, 10 (3) : 491-509. doi: 10.3934/eect.2020077 |
[17] |
Canghua Jiang, Dongming Zhang, Chi Yuan, Kok Ley Teo. An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 135-157. doi: 10.3934/naco.2021056 |
[18] |
Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 883-901. doi: 10.3934/dcdsb.2021072 |
[19] |
Ruth F. Curtain, George Weiss. Strong stabilization of (almost) impedance passive systems by static output feedback. Mathematical Control and Related Fields, 2019, 9 (4) : 643-671. doi: 10.3934/mcrf.2019045 |
[20] |
N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations and Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]