September  2019, 9(3): 319-326. doi: 10.3934/naco.2019021

Frequency interval model reduction of complex fir digital filters

1. 

Department of Mechatronics Engineering, Kulliyah of Engineering, International Islamic University Malaysia, 53100 Jalan Gombak, Malaysia

2. 

School of Electrical and Electronics Engineering, University of Western Australia, 35 Stirling Highway, WA 6009, Australia

3. 

Department of Electrical Engineering, Motilal Nehru National Institute of Technology, Allahabad, 211004, India

* Corresponding author: ahmadjazlan@iium.edu.my

Received  May 2018 Revised  April 2019 Published  May 2019

In this paper, a model reduction method for FIR filters with complex coefficients based on frequency interval impulse response Gramians is developed. The advantage of the proposed method is that only one Lyapunov equation needs to be solved in order to obtain the information regarding the frequency interval controllability and observability of the system. In addition this method overcomes the limitations of using cross Gramians which are not applicable for filters with complex coefficients. The effectiveness of the proposed method is demonstrated by a numerical example.

Citation: Ahmad Jazlan, Umair Zulfiqar, Victor Sreeram, Deepak Kumar, Roberto Togneri, Hasan Firdaus Mohd Zaki. Frequency interval model reduction of complex fir digital filters. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 319-326. doi: 10.3934/naco.2019021
References:
[1]

P. Benner, P. Kürschner and J. Saak, Frequency-limited balanced truncation with low-rank approximations, SIAM Journal on Scientific Computing, 38 (2016), A471–A499. doi: 10.1137/15M1030911.

[2]

X. Chen and T. Parks, Design of FIR filters in the complex domain, IEEE Transactions on Acoustics, Speech, and Signal Processing, 35 (1987), 144-153. 

[3]

D. W. DingX. Du and X. Li, Finite-frequency model reduction of two-dimensional digital filters, IEEE Trans. Autom. Control, 60 (2015), 1624-1629.  doi: 10.1109/TAC.2014.2359305.

[4]

X. DuF. FanD. W. Ding and F. Liu, Finite-frequency model order reduction of discrete-time linear time-delayed systems, Nonlinear Dynamics, X (2016), 1-12.  doi: 10.1007/s11071-015-2496-0.

[5]

X. Du, A. Jazlan, V. Sreeram, R. Togneri, A. Ghafoor and S. Sahlan, A frequency limited model reduction technique for linear discrete systems, Proceedings of the 2013 Australian Control Conference, 421–426.

[6]

W. Gawronski and J. Juang, Model reduction in limited time and frequency intervals, International Journal of Systems Science, 21, 349–376. doi: 10.1080/00207729008910366.

[7]

J. GrykaI. Kale and G. D. Cain, Complex IIR filter design through balance model reduction of FIR prototypes, Electronics Letters, 31 (1995), 1332-1334. 

[8]

M. Imran and A. Ghafoor, Frequency limited model reduction techniques With error bounds, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 65 (2018), 86–90.

[9]

M. Imran and A. Ghafoor, Model reduction of descriptor systems using frequency limited Gramians, J. Franklin Inst., 352 (2015), 33-51.  doi: 10.1016/j.jfranklin.2014.10.013.

[10]

A. JazlanV. SreeramH. R. ShakerR. Togneri and H. B. Minh, Frequency interval cross Gramians for linear and bilinear systems, Asian Journal of Control, 19 (2017), 22-34.  doi: 10.1002/asjc.1330.

[11]

D. KumarV. Sreeram and X. Du, Model reduction using parameterized limited frequency interval Gramians for 1-D and 2-D separable denominator discrete-time systems, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 65 (2018), 2571-2580. 

[12]

X. LiC. Yu and H. Gao, Frequency limited $H_{\infty}$ model reduction for positive systems, IEEE Trans. Autom. Control, 60 (2015), 1093-1098.  doi: 10.1109/TAC.2014.2352751.

[13]

M. A. Masnadi-Shirazi, A. Zollanvari and M. A. Amin, Complex digital Laguerre filter design with weighted least square error subject to magnitude and phase constraints, Signal Processing, 88 (1987), 796.

[14]

W. A. Mousa, Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?, Geophysical Prospecting, 61 (2013), 504-515. 

[15]

M. Okuda, M. Kiyose, M. Ikehara and S. Takahashi, Equiripple design in complex domain for FIR digital filters by transforming desired response, Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 84 (2001), 30.

[16]

H. R. Shaker and M. Tahavori, Frequency-interval model reduction of bilinear systems, IEEE Transactions on Automatic Control, 59 (2014), 1948-1953.  doi: 10.1109/TAC.2013.2295661.

[17]

C. Tseng and S. Lee, Designs of fractional derivative constrained 1-D and 2-D FIR filters in the complex domain, Signal Processing, 95 (2014), 111.

[18]

D. L. Wang and A. Zilouchian, Model reduction of discrete linear systems via frequency-domain balanced structure, IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 47 (2000), 830-837.  doi: 10.1109/81.852936.

[19]

K. Xu and Y. Jiang, An approach to H2 $\omega$ model reduction on finite interval for bilinear systems, Journal of the Franklin Institute, 354 (2017), 7429-7443.  doi: 10.1016/j.jfranklin.2017.08.037.

show all references

References:
[1]

P. Benner, P. Kürschner and J. Saak, Frequency-limited balanced truncation with low-rank approximations, SIAM Journal on Scientific Computing, 38 (2016), A471–A499. doi: 10.1137/15M1030911.

[2]

X. Chen and T. Parks, Design of FIR filters in the complex domain, IEEE Transactions on Acoustics, Speech, and Signal Processing, 35 (1987), 144-153. 

[3]

D. W. DingX. Du and X. Li, Finite-frequency model reduction of two-dimensional digital filters, IEEE Trans. Autom. Control, 60 (2015), 1624-1629.  doi: 10.1109/TAC.2014.2359305.

[4]

X. DuF. FanD. W. Ding and F. Liu, Finite-frequency model order reduction of discrete-time linear time-delayed systems, Nonlinear Dynamics, X (2016), 1-12.  doi: 10.1007/s11071-015-2496-0.

[5]

X. Du, A. Jazlan, V. Sreeram, R. Togneri, A. Ghafoor and S. Sahlan, A frequency limited model reduction technique for linear discrete systems, Proceedings of the 2013 Australian Control Conference, 421–426.

[6]

W. Gawronski and J. Juang, Model reduction in limited time and frequency intervals, International Journal of Systems Science, 21, 349–376. doi: 10.1080/00207729008910366.

[7]

J. GrykaI. Kale and G. D. Cain, Complex IIR filter design through balance model reduction of FIR prototypes, Electronics Letters, 31 (1995), 1332-1334. 

[8]

M. Imran and A. Ghafoor, Frequency limited model reduction techniques With error bounds, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 65 (2018), 86–90.

[9]

M. Imran and A. Ghafoor, Model reduction of descriptor systems using frequency limited Gramians, J. Franklin Inst., 352 (2015), 33-51.  doi: 10.1016/j.jfranklin.2014.10.013.

[10]

A. JazlanV. SreeramH. R. ShakerR. Togneri and H. B. Minh, Frequency interval cross Gramians for linear and bilinear systems, Asian Journal of Control, 19 (2017), 22-34.  doi: 10.1002/asjc.1330.

[11]

D. KumarV. Sreeram and X. Du, Model reduction using parameterized limited frequency interval Gramians for 1-D and 2-D separable denominator discrete-time systems, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 65 (2018), 2571-2580. 

[12]

X. LiC. Yu and H. Gao, Frequency limited $H_{\infty}$ model reduction for positive systems, IEEE Trans. Autom. Control, 60 (2015), 1093-1098.  doi: 10.1109/TAC.2014.2352751.

[13]

M. A. Masnadi-Shirazi, A. Zollanvari and M. A. Amin, Complex digital Laguerre filter design with weighted least square error subject to magnitude and phase constraints, Signal Processing, 88 (1987), 796.

[14]

W. A. Mousa, Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?, Geophysical Prospecting, 61 (2013), 504-515. 

[15]

M. Okuda, M. Kiyose, M. Ikehara and S. Takahashi, Equiripple design in complex domain for FIR digital filters by transforming desired response, Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 84 (2001), 30.

[16]

H. R. Shaker and M. Tahavori, Frequency-interval model reduction of bilinear systems, IEEE Transactions on Automatic Control, 59 (2014), 1948-1953.  doi: 10.1109/TAC.2013.2295661.

[17]

C. Tseng and S. Lee, Designs of fractional derivative constrained 1-D and 2-D FIR filters in the complex domain, Signal Processing, 95 (2014), 111.

[18]

D. L. Wang and A. Zilouchian, Model reduction of discrete linear systems via frequency-domain balanced structure, IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 47 (2000), 830-837.  doi: 10.1109/81.852936.

[19]

K. Xu and Y. Jiang, An approach to H2 $\omega$ model reduction on finite interval for bilinear systems, Journal of the Franklin Institute, 354 (2017), 7429-7443.  doi: 10.1016/j.jfranklin.2017.08.037.

Figure 1.  Magnitude Response of 35th order IIR Filter
Figure 2.  Magnitude Response of 30th order IIR Filter
Figure 3.  Magnitude Response of 23rd order IIR Filter
[1]

Belinda A. Batten, Hesam Shoori, John R. Singler, Madhuka H. Weerasinghe. Balanced truncation model reduction of a nonlinear cable-mass PDE system with interior damping. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 83-107. doi: 10.3934/dcdsb.2018162

[2]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control and Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[3]

Martin Redmann, Melina A. Freitag. Balanced model order reduction for linear random dynamical systems driven by Lévy noise. Journal of Computational Dynamics, 2018, 5 (1&2) : 33-59. doi: 10.3934/jcd.2018002

[4]

Jing Li, Panos Stinis. Model reduction for a power grid model. Journal of Computational Dynamics, 2022, 9 (1) : 1-26. doi: 10.3934/jcd.2021019

[5]

Marie Turčičová, Jan Mandel, Kryštof Eben. Score matching filters for Gaussian Markov random fields with a linear model of the precision matrix. Foundations of Data Science, 2021, 3 (4) : 793-824. doi: 10.3934/fods.2021030

[6]

Andrei Korobeinikov, Aleksei Archibasov, Vladimir Sobolev. Order reduction for an RNA virus evolution model. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1007-1016. doi: 10.3934/mbe.2015.12.1007

[7]

Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control and Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015

[8]

Sarbaz H. A. Khoshnaw. Reduction of a kinetic model of active export of importins. Conference Publications, 2015, 2015 (special) : 705-722. doi: 10.3934/proc.2015.0705

[9]

Marta Marulli, Vuk Miliši$\grave{\rm{c}}$, Nicolas Vauchelet. Reduction of a model for sodium exchanges in kidney nephron. Networks and Heterogeneous Media, 2021, 16 (4) : 609-636. doi: 10.3934/nhm.2021020

[10]

Qiang Zhang, Ping Chen. Multidimensional balanced credibility model with time effect and two level random common effects. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1311-1328. doi: 10.3934/jimo.2019004

[11]

Martin Burger, Alexander Lorz, Marie-Therese Wolfram. Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth. Kinetic and Related Models, 2017, 10 (1) : 117-140. doi: 10.3934/krm.2017005

[12]

A Voutilainen, Jari P. Kaipio. Model reduction and pollution source identification from remote sensing data. Inverse Problems and Imaging, 2009, 3 (4) : 711-730. doi: 10.3934/ipi.2009.3.711

[13]

Martin Redmann, Peter Benner. Approximation and model order reduction for second order systems with Levy-noise. Conference Publications, 2015, 2015 (special) : 945-953. doi: 10.3934/proc.2015.0945

[14]

Peter Benner, Tobias Breiten, Carsten Hartmann, Burkhard Schmidt. Model reduction of controlled Fokker–Planck and Liouville–von Neumann equations. Journal of Computational Dynamics, 2020, 7 (1) : 1-33. doi: 10.3934/jcd.2020001

[15]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[16]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[17]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5407-5419. doi: 10.3934/dcdsb.2020349

[18]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control and Related Fields, 2022, 12 (1) : 115-146. doi: 10.3934/mcrf.2021004

[19]

Mariantonia Cotronei, Tomas Sauer. Full rank filters and polynomial reproduction. Communications on Pure and Applied Analysis, 2007, 6 (3) : 667-687. doi: 10.3934/cpaa.2007.6.667

[20]

Wei Wang, Xiao-Long Xin. On fuzzy filters of Heyting-algebras. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1611-1619. doi: 10.3934/dcdss.2011.4.1611

[Back to Top]