[1]
|
M. Chen and R. Temam, Incremental unknowns for solving partial differential equations, Numer. Math., 59 (1991), 255-251.
doi: 10.1007/BF01385779.
|
[2]
|
M. Chen and R. Temam, Incremental unknowns in finite differences: Condition number of the matrix, SIAM J. Matrix Anal. Appl., 14 (1993), 432-455.
doi: 10.1137/0614031.
|
[3]
|
M. Chen and R. Temam, Nonlinear Galerkin method with multilevel incremental unknowns, Contributions in Numerical Mathematics (ed. R. P. Agarwal), WSSIAA2 (1993), 151–164.
doi: 10.1142/9789812798886_0012.
|
[4]
|
A. Eden, B. Michaux and J. M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dyna. Diff. Equ., 3 (1991), 87-129.
doi: 10.1007/BF01049490.
|
[5]
|
C. Foias, O. Manley and R. Temam, Modeling of the interaction of small and large eddies in two-dimensional turbulent flow, Math. Modelling Numer. Anal., 22 (1988), 93-114.
doi: 10.1051/m2an/1988220100931.
|
[6]
|
G. H. Golub and C. F. Van Loan, Matrix Computations, Post and Telecome Press, 2009.
|
[7]
|
P. Poullet and A. Boag, Equation-based interpolation and incremental unknowns for solving the three-dimensional Helmholtz equation, Appl. Math. Comput., 232 (2014), 1200-1208.
doi: 10.1016/j.amc.2014.01.084.
|
[8]
|
L. J. Song and Y. J. Wu, Nonlinear stability of reaction-diffusion equations using wavelet-like incremental unknowns, Appl. Numer. Math., 68 (2013), 83-107.
doi: 10.1016/j.apnum.2012.12.003.
|
[9]
|
R. Temam, Inertial manifolds and multigrid methods, SIAM J. Math. Anal., 21 (1990), 154-178.
doi: 10.1137/0521009.
|
[10]
|
Y. Wang, Y. J. Wu and X. Y. Fan, Two parameter preconditioned NSS methods for non-Hermitian and positive definite linear systems, Communication on Applied Mathematics and Computation, 27 (2014), 322-340.
|
[11]
|
Y. J. Wu and A. L. Yang, Incremental unknowns for the heat equation with time-dependent coefficients: semi-implicit $\theta$ schemes and their staility, J. Comput. Math., 25 (2007), 573-582.
|
[12]
|
Y. J. Wu, Y. Wang, M. L. Zeng and A. L. Yang, Implementation of a modified Marder-Weitzner method for solving nonlinear eigenvalue problems, J. Comput. Appl. Math., 226 (2009), 166-176.
doi: 10.1016/j.cam.2008.05.034.
|
[13]
|
Y. J. Wu, X. X. Jia and A. L. She, Semi-implicit schemes with multilevel wavelet-like incremental unknowns for solving reaction diffusion equation, Hokkaido Mathematical Journal, 36 (2007), 711-728.
doi: 10.14492/hokmj/1272848029.
|
[14]
|
A. L. Yang and Y. J. Wu, Wavelet-like block incremental unknowns for numerical computation of anisotropic parabolic equations, World Congress on Computer Science and Information Engineering, 2 (2009), 550-554.
|
[15]
|
A. L. Yang and Y. J. Wu, Preconditioning analysis of the one dimensional incremental unknowns method on nonuniform meshes, J. Appl. Math. Comput., 44 (2014), 379-395.
doi: 10.1007/s12190-013-0698-5.
|
[16]
|
A. L. Yang, Y. J. Wu, Z. D. Huang and J. Y. Yuan, Preconditioning analysis of nonuniform incremental unknowns method for two dimensional elliptic problems, Appl. Math. Modelling, 39 (2015), 5436-5451.
doi: 10.1016/j.apm.2015.01.009.
|
[17]
|
A. L. Yang, L. J. Song and Y. J. Wu, Algebraic preconditioning analysis of the multilevel block incremental unknowns method for anisotropic elliptic operators, Math. Comput. Modelling, 57 (2013), 512-524.
doi: 10.1016/j.mcm.2012.06.031.
|