# American Institute of Mathematical Sciences

December  2019, 9(4): 493-506. doi: 10.3934/naco.2019037

## A hybrid parametrization approach for a class of nonlinear optimal control problems

 1 Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran 2 Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran 3 Department of Applied Mathematics, University of Science and Technology of Mazandaran, Behshahr, Iran

Received  November 2018 Revised  April 2019 Published  May 2019

In this paper, a suitable hybrid iterative scheme for solving a class of non-linear optimal control problems (NOCPs) is proposed. The technique is based upon homotopy analysis and parametrization methods. Actually an appropriate parametrization of control is applied and state variables are computed using homotopy analysis method (HAM). Then performance index is transformed by replacing new control and state variables. The results obtained from the given method are compared with the results which are obtained using the spectral homotopy analysis method (SHAM), homotopy perturbation method (HPM), optimal homotopy perturbation method (OHPM), modified variational iteration method (MVIM) and differential transformations. The existence and uniqueness of the solution are presented. The comparison and ability of the given approach is illustrated via two examples.

Citation: M. Alipour, M. A. Vali, A. H. Borzabadi. A hybrid parametrization approach for a class of nonlinear optimal control problems. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 493-506. doi: 10.3934/naco.2019037
##### References:
 [1] S. Abbasbandi, Homotopy analysis method for Kawahara equations nonlinear analysis, Real World Applications, 11 (2010), 307-312.  doi: 10.1016/j.nonrwa.2008.11.005. [2] S. Effati, H. Saberi Nik and M. Shirazian, Analytic-approximate solution for a class of nonlinear optimal control problems by homotopy analysis method, Asian-European Journal of Mathematics, 6 (2013), 1-22.  doi: 10.1142/S1793557113500125. [3] S. Ganjefar and S. Rezaei, Modified homotopy perturbation method for optimal control problems using Pade approximant, Applied Mathematical Modelling, 40 (2016), 7062-7081.  doi: 10.1016/j.apm.2016.02.039. [4] X. Gao, K. L. Teo and G. R. Duan, An optimal control approach to spacecraft rendezvous on elliptical orbit, Optim. Control Appl. Meth., 36 (2015), 158-178.  doi: 10.1002/oca.2108. [5] C. K. Ghaddar, Rapid solution of optimal control problems by a functional spreadsheet paradigm: A practical method for the non-programmer, Mathematical and Computational Applications, 23 (2018), 54-82.  doi: 10.3390/mca23040054. [6] C. J. Goh and K. L. Teo, Control parameterization: a unified approach to optimal control problem with general constraints, Automatica, 24 (1988), 3-18.  doi: 10.1016/0005-1098(88)90003-9. [7] Q. Gong, I. M. Ross, W. Kang and F. Fahroo, Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control, Comput. Optim. Appl., 41 (2008), 307-335.  doi: 10.1007/s10589-007-9102-4. [8] J. H. He, Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73-79.  doi: 10.1016/S0096-3003(01)00312-5. [9] I. Hwang, A computational approach to solve optimal control problems using differential transformation, In Proceedings of the 2007 American Control Conference, Marriott Marquis Hotel at Times Square, New York City, USA, 11–13, July 2007. [10] M. Itik, M. U. Salamci and S. P. Banksa, Optimal control of drug therapy in cancer treatment, Nonlinear Analysis, 71 (2009), 1473-1486. [11] H. Jafari and M. Alipour, Solution of the Davey Stewartson equation using homotopy analysis method, Nonlinear Analysis: Modelling and Control, 15 (2010), 423-433. [12] A. Jajarmi, N. Pariz, A. Vahidian Kamyad and S. Effati, A highly computational efficient method to solve nonlinear optimal control problems, Scientia Iranica D, 19 (2012), 759-766. [13] A. Jajarmi, M. Hajipour, E. Mohammadzadeh and Du mitru Baleanu, A new approach for the nonlinear fractional optimal control problems with external persistent disturbances, Journal of the Franklin Institute, 355 (2018), 3938-3967.  doi: 10.1016/j.jfranklin.2018.03.012. [14] W. Jia, X. He and L. Guo, The optimal homotopy analysis method for solving linear optimal control problems, Applied Mathematical Modelling, 45 (2017), 865-880.  doi: 10.1016/j.apm.2017.01.024. [15] X. J. Tang, J. L. Wei and K. Chen, A Chebyshev-Gauss pseudospectral method for solving optimal control problems, Acta Automatica Sinica, 41 (2015), 1778-1787. [16] J. L. Junkins and J. D. Turner, Optimal Spacecraft Rotational Maneuvers, Elsevier-Amsterdam, 1986. [17] M. El-Kady, Legendre approximations for solving optimal control problems governed by ordinary differential equations, International Journal of Control Science and Engineering, 2 (2012), 54-59. [18] B. Kafash, A. Delavarkhalafi, S. M. Karbassi and K. Boubaker, A numerical approach for solving optimal control problems using the Boubaker polynomials expansion scheme, Journal of Interpolation and Approximation in Scientific Computing, 2014 (2014), 1-18.  doi: 10.5899/2014/jiasc-00033. [19] S. L. Kek, K. L. Teo and M. I. A. Aziz, Efficient output solution for nonlinear stochastic optimal control problem with model-reality differences, Mathematical Problems in Engineering, 2015 (2015), Article ID 659506, 9 pages. doi: 10.1155/2015/659506. [20] M. Keyanpour and M. Azizsefat, Numerical solution of optimal control problems by an iterative scheme, AMO- Advanced Modeling and Optimization, 13 (2011), 25-37. [21] R. Lia, K. L. Teo, K. H. Wong and G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.  doi: 10.1016/j.mcm.2005.08.012. [22] S. J. Liao, The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, Ph.D. Thesis- Shanghai Jiao Tong University, 1992. [23] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press-Boca Raton, Chapman Hall, 2003. [24] S. J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Springer/Higher Education, 2012. [25] Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependents stopping criteria, Automatica, 48 (2012), 2116-2129.  doi: 10.1016/j.automatica.2012.06.055. [26] Q. Lin, R. Loxton and K. L. Teo, Optimal control of nonlinear switched systems: Computational methods and applications, JORC, 1 (2013), 275-311. [27] Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Managment Optimization, 10 (2014), 275-309.  doi: 10.3934/jimo.2014.10.275. [28] M. Matinfar and M. Saeidy, A new analytical method for solving a class of nonlinear optimal control problems, Optimal Control Applications and Methods, 35 (2014), 286-302.  doi: 10.1002/oca.2068. [29] H. Mirinejad and T. Inanc, An RBF collocation method for solving optimal control problems, Robotics and Autonomous Systems, 87 (2017), 219-225. [30] A. Nazemi, S. Hesam and A. Haghbin, An application of differential transform method for solving nonlinear optimal control problems, Computational Methods for Differential Equations, 3 (2015), 200-217. [31] S. Nezhadhosein, A. Heyda and R. Ghanbari, A modified hybrid genetic algorithm for solving nonlinear optimal control problems, Mathematical Problems in Engineering, 2015, Article ID 139036, 21 pages. doi: 10.1155/2015/139036. [32] H. Saberi Nik, S. Effati, S. S. Motsa and M. Shirazian, Spectral homotopy analysis method and its convergence for solving a class of nonlinear optimal control problems, Numer. Algor., 65 (2014), 171-194.  doi: 10.1007/s11075-013-9700-4. [33] M. Shirazian and S. Effati, Solving a class of nonlinear optimal control problems via Hes variational iteration method, International Journal of Control, Automation, and Systems, 10 (2012), 249-256. [34] O. Y. Stryk and R. Bulirsch, Direct and indirect methods for trajectory optimazation, Annals of Operations Research, 37 (1992), 357-373.  doi: 10.1007/BF02071065. [35] K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, Essex, 1991. [36] K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, Control parametrization enhancing technique for constrained optimal control problems, J. Austral. Math. Soc. B, 40 (1999), 314-335.  doi: 10.1017/S0334270000010936. [37] S. Wei, M. Zefran and R. A. Decarlo, Optimal control of robotic system with logical constraints: application to UAV path planning, Q6 Proceeding(s) of the IEEE International Conference on Robotic and Automation, Pasadena. CA, USA, 2008. [38] X. S. Chen, X. K. Li, L. L. Zhang, and S. T. Cai, A new spectral method for the nonlinear optimal control, Proceedings of the 36th Chinese Control Conference, July 26–28, 2017, Dalian, China.

show all references

##### References:
 [1] S. Abbasbandi, Homotopy analysis method for Kawahara equations nonlinear analysis, Real World Applications, 11 (2010), 307-312.  doi: 10.1016/j.nonrwa.2008.11.005. [2] S. Effati, H. Saberi Nik and M. Shirazian, Analytic-approximate solution for a class of nonlinear optimal control problems by homotopy analysis method, Asian-European Journal of Mathematics, 6 (2013), 1-22.  doi: 10.1142/S1793557113500125. [3] S. Ganjefar and S. Rezaei, Modified homotopy perturbation method for optimal control problems using Pade approximant, Applied Mathematical Modelling, 40 (2016), 7062-7081.  doi: 10.1016/j.apm.2016.02.039. [4] X. Gao, K. L. Teo and G. R. Duan, An optimal control approach to spacecraft rendezvous on elliptical orbit, Optim. Control Appl. Meth., 36 (2015), 158-178.  doi: 10.1002/oca.2108. [5] C. K. Ghaddar, Rapid solution of optimal control problems by a functional spreadsheet paradigm: A practical method for the non-programmer, Mathematical and Computational Applications, 23 (2018), 54-82.  doi: 10.3390/mca23040054. [6] C. J. Goh and K. L. Teo, Control parameterization: a unified approach to optimal control problem with general constraints, Automatica, 24 (1988), 3-18.  doi: 10.1016/0005-1098(88)90003-9. [7] Q. Gong, I. M. Ross, W. Kang and F. Fahroo, Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control, Comput. Optim. Appl., 41 (2008), 307-335.  doi: 10.1007/s10589-007-9102-4. [8] J. H. He, Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73-79.  doi: 10.1016/S0096-3003(01)00312-5. [9] I. Hwang, A computational approach to solve optimal control problems using differential transformation, In Proceedings of the 2007 American Control Conference, Marriott Marquis Hotel at Times Square, New York City, USA, 11–13, July 2007. [10] M. Itik, M. U. Salamci and S. P. Banksa, Optimal control of drug therapy in cancer treatment, Nonlinear Analysis, 71 (2009), 1473-1486. [11] H. Jafari and M. Alipour, Solution of the Davey Stewartson equation using homotopy analysis method, Nonlinear Analysis: Modelling and Control, 15 (2010), 423-433. [12] A. Jajarmi, N. Pariz, A. Vahidian Kamyad and S. Effati, A highly computational efficient method to solve nonlinear optimal control problems, Scientia Iranica D, 19 (2012), 759-766. [13] A. Jajarmi, M. Hajipour, E. Mohammadzadeh and Du mitru Baleanu, A new approach for the nonlinear fractional optimal control problems with external persistent disturbances, Journal of the Franklin Institute, 355 (2018), 3938-3967.  doi: 10.1016/j.jfranklin.2018.03.012. [14] W. Jia, X. He and L. Guo, The optimal homotopy analysis method for solving linear optimal control problems, Applied Mathematical Modelling, 45 (2017), 865-880.  doi: 10.1016/j.apm.2017.01.024. [15] X. J. Tang, J. L. Wei and K. Chen, A Chebyshev-Gauss pseudospectral method for solving optimal control problems, Acta Automatica Sinica, 41 (2015), 1778-1787. [16] J. L. Junkins and J. D. Turner, Optimal Spacecraft Rotational Maneuvers, Elsevier-Amsterdam, 1986. [17] M. El-Kady, Legendre approximations for solving optimal control problems governed by ordinary differential equations, International Journal of Control Science and Engineering, 2 (2012), 54-59. [18] B. Kafash, A. Delavarkhalafi, S. M. Karbassi and K. Boubaker, A numerical approach for solving optimal control problems using the Boubaker polynomials expansion scheme, Journal of Interpolation and Approximation in Scientific Computing, 2014 (2014), 1-18.  doi: 10.5899/2014/jiasc-00033. [19] S. L. Kek, K. L. Teo and M. I. A. Aziz, Efficient output solution for nonlinear stochastic optimal control problem with model-reality differences, Mathematical Problems in Engineering, 2015 (2015), Article ID 659506, 9 pages. doi: 10.1155/2015/659506. [20] M. Keyanpour and M. Azizsefat, Numerical solution of optimal control problems by an iterative scheme, AMO- Advanced Modeling and Optimization, 13 (2011), 25-37. [21] R. Lia, K. L. Teo, K. H. Wong and G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.  doi: 10.1016/j.mcm.2005.08.012. [22] S. J. Liao, The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, Ph.D. Thesis- Shanghai Jiao Tong University, 1992. [23] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press-Boca Raton, Chapman Hall, 2003. [24] S. J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Springer/Higher Education, 2012. [25] Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependents stopping criteria, Automatica, 48 (2012), 2116-2129.  doi: 10.1016/j.automatica.2012.06.055. [26] Q. Lin, R. Loxton and K. L. Teo, Optimal control of nonlinear switched systems: Computational methods and applications, JORC, 1 (2013), 275-311. [27] Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Managment Optimization, 10 (2014), 275-309.  doi: 10.3934/jimo.2014.10.275. [28] M. Matinfar and M. Saeidy, A new analytical method for solving a class of nonlinear optimal control problems, Optimal Control Applications and Methods, 35 (2014), 286-302.  doi: 10.1002/oca.2068. [29] H. Mirinejad and T. Inanc, An RBF collocation method for solving optimal control problems, Robotics and Autonomous Systems, 87 (2017), 219-225. [30] A. Nazemi, S. Hesam and A. Haghbin, An application of differential transform method for solving nonlinear optimal control problems, Computational Methods for Differential Equations, 3 (2015), 200-217. [31] S. Nezhadhosein, A. Heyda and R. Ghanbari, A modified hybrid genetic algorithm for solving nonlinear optimal control problems, Mathematical Problems in Engineering, 2015, Article ID 139036, 21 pages. doi: 10.1155/2015/139036. [32] H. Saberi Nik, S. Effati, S. S. Motsa and M. Shirazian, Spectral homotopy analysis method and its convergence for solving a class of nonlinear optimal control problems, Numer. Algor., 65 (2014), 171-194.  doi: 10.1007/s11075-013-9700-4. [33] M. Shirazian and S. Effati, Solving a class of nonlinear optimal control problems via Hes variational iteration method, International Journal of Control, Automation, and Systems, 10 (2012), 249-256. [34] O. Y. Stryk and R. Bulirsch, Direct and indirect methods for trajectory optimazation, Annals of Operations Research, 37 (1992), 357-373.  doi: 10.1007/BF02071065. [35] K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, Essex, 1991. [36] K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, Control parametrization enhancing technique for constrained optimal control problems, J. Austral. Math. Soc. B, 40 (1999), 314-335.  doi: 10.1017/S0334270000010936. [37] S. Wei, M. Zefran and R. A. Decarlo, Optimal control of robotic system with logical constraints: application to UAV path planning, Q6 Proceeding(s) of the IEEE International Conference on Robotic and Automation, Pasadena. CA, USA, 2008. [38] X. S. Chen, X. K. Li, L. L. Zhang, and S. T. Cai, A new spectral method for the nonlinear optimal control, Proceedings of the 36th Chinese Control Conference, July 26–28, 2017, Dalian, China.
Approximate solution of $x_1(t)$ and $u_1(t)$ for (m = 4, k = 2)
Approximate solution of x2(t) and u2(t) for (m = 4, k = 2)
Approximate solution of x3(t) and u3(t) for (m = 4, k = 2)
h-curve at 4-order of approximation of $x_1(t)$ and $x_2(t)$
h-curve at 4-order of approximation of $x_3(t)$
Approximate solution of $x_1(t)$ and $x_2(t)$ for (m = 7, k = 3)
Approximate solution of $u(t)$
h-curve at 7-order of approximation of x1(t) and x2(t)
Minimum of performance index value $J_k$ of the proposed method
 Itr CPU time (sec.) HAM and parametrization approaches m=4, k=1 $0.109$ $0.00468778$ m=4, k=2 $0.121$ $0.00468778$
 Itr CPU time (sec.) HAM and parametrization approaches m=4, k=1 $0.109$ $0.00468778$ m=4, k=2 $0.121$ $0.00468778$
The Max error of the proposed method for $x_1(t)$ that $k = 2$ and $h = -1$ in comparison to SHAM and HPM
 Method CPU time (sec.) Max error proposed method (m=4, k=2) $0.155$ $2.93152 * 10^{-17}$ SHAM (Legendre) (m=6, N=50, h=-1.2) $0.224$ $1.0589* 10^{-9}$ SHAM (Chebyshev) (m=6, N=50, h=-1.2) $0.224$ $1.0586* 10^{-9}$ HPM (m=6) $46.401$ $3.1420* 10^{-8}$
 Method CPU time (sec.) Max error proposed method (m=4, k=2) $0.155$ $2.93152 * 10^{-17}$ SHAM (Legendre) (m=6, N=50, h=-1.2) $0.224$ $1.0589* 10^{-9}$ SHAM (Chebyshev) (m=6, N=50, h=-1.2) $0.224$ $1.0586* 10^{-9}$ HPM (m=6) $46.401$ $3.1420* 10^{-8}$
Minimum of performance index value $J$ of the proposed method and other methods
 Method Cost function CPU time (sec.) Proposed Method (m=4, k=2, h=-1) $0.00468778$ $0.141$ SHAM Chebyshev (m=6, N=50, h=-1.2) $0.0046877944625923$ $0.226$ SHAM Legendre (m=6, N=50, h=-1.2) $0.0046877944625906$ $0.227$ HPM (m=3) $0.004687795533$ $10.821$ OHPM (m=1) $0.004688009428$ $-$ MVIM (m=3) $0.004687986656$ $-$
 Method Cost function CPU time (sec.) Proposed Method (m=4, k=2, h=-1) $0.00468778$ $0.141$ SHAM Chebyshev (m=6, N=50, h=-1.2) $0.0046877944625923$ $0.226$ SHAM Legendre (m=6, N=50, h=-1.2) $0.0046877944625906$ $0.227$ HPM (m=3) $0.004687795533$ $10.821$ OHPM (m=1) $0.004688009428$ $-$ MVIM (m=3) $0.004687986656$ $-$
Minimum of performance index value $J_k$ of the proposed method
 Itr CPU time (sec.) HAM and parametrization approaches m=7, k=1 $0.016$ $1.07504$ m=7, k=2 $0.031$ $1.0136$ m= 7, k=3 $0.032$ $1.01184$
 Itr CPU time (sec.) HAM and parametrization approaches m=7, k=1 $0.016$ $1.07504$ m=7, k=2 $0.031$ $1.0136$ m= 7, k=3 $0.032$ $1.01184$
The Max error of our method of $x_1(t)$ in comparison to SHAM and HPM
 Itr Max error Proposed Method (m=7, k=3, h=-0.9) $3.16673\times10^{-5}$ SHAM Chebyshev (m=15, N=50, h=-0.5) $4.2749\times10^{-4}$ SHAM Legendre (m=15, N=50, h=-0.5) $4.2749\times10^{-4}$ DT (m=15) $4.4380\times10^{-4}$
 Itr Max error Proposed Method (m=7, k=3, h=-0.9) $3.16673\times10^{-5}$ SHAM Chebyshev (m=15, N=50, h=-0.5) $4.2749\times10^{-4}$ SHAM Legendre (m=15, N=50, h=-0.5) $4.2749\times10^{-4}$ DT (m=15) $4.4380\times10^{-4}$
Minimum of performance index value J of the proposed method and other methods
 Method Cost function CPU time (sec.) Proposed Method (m=7, k=3, h=-0.9) $1.01184$ $0.032$ SHAM Chebyshev (m=15, N=50, h=-0.5) $1.0472$ $0.200$ SHAM Legendre (m=15, N=50, h=-0.5) $1.0472$ $0.188$ DT (m=15) $1.0478$ $87.74$
 Method Cost function CPU time (sec.) Proposed Method (m=7, k=3, h=-0.9) $1.01184$ $0.032$ SHAM Chebyshev (m=15, N=50, h=-0.5) $1.0472$ $0.200$ SHAM Legendre (m=15, N=50, h=-0.5) $1.0472$ $0.188$ DT (m=15) $1.0478$ $87.74$
Minimum of performance index value Jk of the proposed method
 Itr CPU time (sec.) HAM and parametrization approaches m=7, k=1 0.016 1.07504 m=7, k=2 0.031 1.0136 m= 7, k=3 0.032 1.01184
 Itr CPU time (sec.) HAM and parametrization approaches m=7, k=1 0.016 1.07504 m=7, k=2 0.031 1.0136 m= 7, k=3 0.032 1.01184
The Max error of our method of x1(t) in comparison to SHAM and HPM
 Itr Max error Proposed Method (m=7, k=3, h=-0.9) $5.36319\times10^{-5}$ SHAM Chebyshev (m=15, N=50, h=-0.5) $4.2749\times10^{-4}$ SHAM Legendre (m=15, N=50, h=-0.5) $4.2749\times10^{-4}$ DT (m=15) $4.4380\times10^{-4}$
 Itr Max error Proposed Method (m=7, k=3, h=-0.9) $5.36319\times10^{-5}$ SHAM Chebyshev (m=15, N=50, h=-0.5) $4.2749\times10^{-4}$ SHAM Legendre (m=15, N=50, h=-0.5) $4.2749\times10^{-4}$ DT (m=15) $4.4380\times10^{-4}$
Minimum of performance index value J of the proposed method and other methods
 Method Cost function Proposed Method (m=4, k=2) 1.04483 SHAM Chebyshev (m=15, N=50, h=-0.5) 1.0472 SHAM Legendre (m=15, N=50, h=-0.5) 1.0472 DT (m=15) 1.0478
 Method Cost function Proposed Method (m=4, k=2) 1.04483 SHAM Chebyshev (m=15, N=50, h=-0.5) 1.0472 SHAM Legendre (m=15, N=50, h=-0.5) 1.0472 DT (m=15) 1.0478
 [1] Bin Li, Xiaolong Guo, Xiaodong Zeng, Songyi Dian, Minhua Guo. An optimal pid tuning method for a single-link manipulator based on the control parametrization technique. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1813-1823. doi: 10.3934/dcdss.2020107 [2] Jinlong Guo, Bin Li, Yuandong Ji. A control parametrization based path planning method for the quad-rotor uavs. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1079-1100. doi: 10.3934/jimo.2021009 [3] Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123 [4] Heung Wing Joseph Lee, Chi Kin Chan, Karho Yau, Kar Hung Wong, Colin Myburgh. Control parametrization and finite element method for controlling multi-species reactive transport in a circular pool. Journal of Industrial and Management Optimization, 2013, 9 (3) : 505-524. doi: 10.3934/jimo.2013.9.505 [5] Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487 [6] Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial and Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275 [7] Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 [8] Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021220 [9] Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015 [10] Karl Kunisch, Markus Müller. Uniform convergence of the POD method and applications to optimal control. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4477-4501. doi: 10.3934/dcds.2015.35.4477 [11] Zhichuan Zhu, Bo Yu, Li Yang. Globally convergent homotopy method for designing piecewise linear deterministic contractual function. Journal of Industrial and Management Optimization, 2014, 10 (3) : 717-741. doi: 10.3934/jimo.2014.10.717 [12] Chunyang Zhang, Shugong Zhang, Qinghuai Liu. Homotopy method for a class of multiobjective optimization problems with equilibrium constraints. Journal of Industrial and Management Optimization, 2017, 13 (1) : 81-92. doi: 10.3934/jimo.2016005 [13] Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039 [14] Xin Li, Feng Bao, Kyle Gallivan. A drift homotopy implicit particle filter method for nonlinear filtering problems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 727-746. doi: 10.3934/dcdss.2021097 [15] Alexander Tyatyushkin, Tatiana Zarodnyuk. Numerical method for solving optimal control problems with phase constraints. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 481-492. doi: 10.3934/naco.2017030 [16] Mohamed Aliane, Mohand Bentobache, Nacima Moussouni, Philippe Marthon. Direct method to solve linear-quadratic optimal control problems. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 645-663. doi: 10.3934/naco.2021002 [17] Térence Bayen, Marc Mazade, Francis Mairet. Analysis of an optimal control problem connected to bioprocesses involving a saturated singular arc. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 39-58. doi: 10.3934/dcdsb.2015.20.39 [18] Max Gunzburger, Sung-Dae Yang, Wenxiang Zhu. Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 569-587. doi: 10.3934/dcdsb.2007.8.569 [19] Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial and Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247 [20] Zhengyong Zhou, Bo Yu. A smoothing homotopy method based on Robinson's normal equation for mixed complementarity problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 977-989. doi: 10.3934/jimo.2011.7.977

Impact Factor: