• Previous Article
    System of generalized mixed nonlinear ordered variational inclusions
  • NACO Home
  • This Issue
  • Next Article
    Stability analysis of stagnation point flow in nanofluid over stretching/shrinking sheet with slip effect using buongiorno's model
December  2019, 9(4): 433-444. doi: 10.3934/naco.2019042

Numerical solutions of Volterra integro-differential equations using General Linear Method

1. 

School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia

2. 

Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

* Corresponding author: faranak.rabiei@monash.edu; faranak.rabiei@gmail.com

The reviewing process of the paper is handled by Gafurjan Ibragimov, Siti Hasana Sapar and Siti Nur Iqmal Ibrahim

Received  February 2018 Revised  June 2018 Published  August 2019

In this paper, a third order General Linear Method for finding the numerical solution of Volterra integro-differential equation is considered. The order conditions of the proposed method are derived based on techniques of B-series and 'rooted trees'. The integral operator in Volterra integro-differential equation approximated using Simpson's rule and Lagrange interpolation is discussed. To illustrate the efficiency of third order General Linear Method, we compare the method with a third order Runge-Kutta method.

Citation: Faranak Rabiei, Fatin Abd Hamid, Zanariah Abd Majid, Fudziah Ismail. Numerical solutions of Volterra integro-differential equations using General Linear Method. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 433-444. doi: 10.3934/naco.2019042
References:
[1]

J. C. Butcher, General linear methods, Acta Numerica, 15 (2006), 157-256.  doi: 10.1017/S0962492906220014.

[2]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley and Sons, Chichester, 2008. doi: 10.1002/9781119121534.

[3]

P. ChartierE. Hairer and G. Vilmart, Algebraic structures of B-series, Foundations of Computational Mathematics, 10 (2010), 407-427.  doi: 10.1007/s10208-010-9065-1.

[4] J. R. Dormand, Numerical Methods for Differential Equations: A Computational Approach, CRC Press, Florida, 1992.  doi: 10.1201/9781351075107.
[5]

A. Filiz, A fourth-order robust numerical method for integro-differential equations, Asian Journal of Fuzzy and Applied Mathematics, 1 (2013), 28-33. 

[6]

A. Filiz, Numerical solution of linear volterra integro-differential equations using runge-kutta-felhberg method, Applied and Computational Mathematics, 1 (2014), 9-14. 

[7]

A. Filiz, General linear methods for ordinary differential equations, Mathematics and Computers in Simulation, 79 (2009), 1834-1845.  doi: 10.1016/j.matcom.2007.02.006.

[8]

P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.

[9]

F. RabieiF. A. HamidM. M. Rashidi and F. Ismail, Numerical simulation of fuzzy differential equations using general linear method and B-series, Advances in Mechanical Engineering, 9 (2010), 1-16. 

[10]

B. Raftari, Numerical solutions of the linear volterra integro-differential equations: Homotopy perturbation method and finite difference method, World Applied Sciences Journal, 9 (2010), 7-12. 

[11]

A. M. Wazwaz, Linear and Nonlinear Integral Equations, Springer, Beijing, 2011. doi: 10.1007/978-3-642-21449-3.

[12]

M. Zarebnia, Sinc numerical solution for the Volterra integro-differential equation, Nonlinear Sci. Numer. Simulat., 15 (2010), 700-706.  doi: 10.1016/j.cnsns.2009.04.021.

show all references

References:
[1]

J. C. Butcher, General linear methods, Acta Numerica, 15 (2006), 157-256.  doi: 10.1017/S0962492906220014.

[2]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley and Sons, Chichester, 2008. doi: 10.1002/9781119121534.

[3]

P. ChartierE. Hairer and G. Vilmart, Algebraic structures of B-series, Foundations of Computational Mathematics, 10 (2010), 407-427.  doi: 10.1007/s10208-010-9065-1.

[4] J. R. Dormand, Numerical Methods for Differential Equations: A Computational Approach, CRC Press, Florida, 1992.  doi: 10.1201/9781351075107.
[5]

A. Filiz, A fourth-order robust numerical method for integro-differential equations, Asian Journal of Fuzzy and Applied Mathematics, 1 (2013), 28-33. 

[6]

A. Filiz, Numerical solution of linear volterra integro-differential equations using runge-kutta-felhberg method, Applied and Computational Mathematics, 1 (2014), 9-14. 

[7]

A. Filiz, General linear methods for ordinary differential equations, Mathematics and Computers in Simulation, 79 (2009), 1834-1845.  doi: 10.1016/j.matcom.2007.02.006.

[8]

P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.

[9]

F. RabieiF. A. HamidM. M. Rashidi and F. Ismail, Numerical simulation of fuzzy differential equations using general linear method and B-series, Advances in Mechanical Engineering, 9 (2010), 1-16. 

[10]

B. Raftari, Numerical solutions of the linear volterra integro-differential equations: Homotopy perturbation method and finite difference method, World Applied Sciences Journal, 9 (2010), 7-12. 

[11]

A. M. Wazwaz, Linear and Nonlinear Integral Equations, Springer, Beijing, 2011. doi: 10.1007/978-3-642-21449-3.

[12]

M. Zarebnia, Sinc numerical solution for the Volterra integro-differential equation, Nonlinear Sci. Numer. Simulat., 15 (2010), 700-706.  doi: 10.1016/j.cnsns.2009.04.021.

Figure 1.  Log maximum error versus number of functions evaluations for Problem 1
Figure 2.  Log maximum error versus number of functions evaluations for Problem 2
Figure 3.  Log maximum error versus number of functions evaluations for Problem 3
Figure 4.  Log maximum error versus number of functions evaluations for Problem 4
Figure 5.  Log maximum error versus number of functions evaluations for Problem 5
Table 1.  Matrix representation of coefficients of GLM.
$ A_{s\times s} $ $ U_{s\times r} $
$ B_{r\times s} $ $ V_{r\times r} $
$ A_{s\times s} $ $ U_{s\times r} $
$ B_{r\times s} $ $ V_{r\times r} $
Table 2.  Matrix coefficients of GLM with $ s = 3 $, $ r = 2 $.
$\left[ {\begin{array}{*{20}{l}} 0&0&0\\ {{a_{21}}}&0&0\\ {{a_{31}}}&{{a_{32}}}&0 \end{array}} \right] $ $\left[ {\begin{array}{*{20}{l}} {{u_{11}}}&{{u_{12}}}\\ {{u_{21}}}&{{u_{22}}}\\ {{u_{31}}}&{{u_{32}}} \end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}} {{b_{11}}}&{{b_{12}}}&{{b_{13}}}\\ {{b_{21}}}&{{b_{22}}}&{{b_{23}}} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{c}} 1&{{v_{12}}}\\ {{v_{21}}}&0 \end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}} 0&0&0\\ {{a_{21}}}&0&0\\ {{a_{31}}}&{{a_{32}}}&0 \end{array}} \right] $ $\left[ {\begin{array}{*{20}{l}} {{u_{11}}}&{{u_{12}}}\\ {{u_{21}}}&{{u_{22}}}\\ {{u_{31}}}&{{u_{32}}} \end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}} {{b_{11}}}&{{b_{12}}}&{{b_{13}}}\\ {{b_{21}}}&{{b_{22}}}&{{b_{23}}} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{c}} 1&{{v_{12}}}\\ {{v_{21}}}&0 \end{array}} \right]$
Table 3.  Order conditions of GLM up to order three.
No Order conditions
1 $ b_{11}(u_{11}+u_{12})+b_{12}(u_{21}+u_{22})+b_{13}(u_{31}+u_{32})-v_{12}=1 $
2 $ b_{21}(u_{11}+u_{12})+b_{22}(u_{21}+u_{22})+b_{23}(u_{31}+u_{32})=0 $
3 $ -b_{11}u_{12}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big) $
$ \qquad+v_{12}\xi_{22}=\frac{1}{2} $
4 $ -b_{21}u_{12}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)=0 $
5 $ b_{11}u_{12}^{2}+b_{12}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2} $
$ \qquad+v_{12}\xi_{23}=\frac{1}{3} $
6 $ b_{21}u_{12}^{2}+b_{22}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2}=0 $
7 $ b_{11}u_{12}\xi_{22}+b_{12}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{13}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22}) $
$ \qquad +u_{32}\xi_{22}\big)+v_{12}\xi_{24}=\frac{1}{6} $
8 $ b_{21}u_{12}\xi_{22}+b_{22}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{23}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22}) $
$ \qquad+u_{32}\xi_{22}\big)=0 $
9 $ -b_{11}u_{12}^{3}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{13}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22})-u_{32}\big)^{3} $
$ \qquad+v_{12}\xi_{25}\frac{1}{4}=\frac{1}{4} $
10 $ -b_{21}u_{12}^{3}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{23}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22}) $
$ \qquad-u_{32}\big)^{3}=0 $
11 $ -b_{11}u_{12}^{2}\xi_{22} + b_{12}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32} $
$ \qquad (u_{21}+u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)+v_{12}\xi_{26} =\frac{1}{8} $
12 $ -b_{21}u_{12}^{2}\xi_{22} + b_{22}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{23}\big(a_{31}(u_{11} + u_{12}) $
$ \qquad+a_{32}(u_{21} + u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)=0 $
13 $ b_{11}u_{12}\xi_{23} + b_{12}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{13}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2}+u_{32}\xi_{23}\big) $
$ \qquad+v_{12}\xi_{27}=\frac{1}{12} $
14 $ b_{21}u_{12}\xi_{23} + b_{22}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{23}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2} $
$ \qquad+u_{32}\xi_{23}\big)=0 $
15 $ b_{11}u_{12}\xi_{24} + b_{12}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{13}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12})+u_{32}\xi_{24}\big) $
$ \qquad+v_{12}\xi_{28}=\frac{1}{24} $
16 $ b_{21}u_{12}\xi_{24} + b_{22}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{23}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12}) $
$ \qquad+u_{32}\xi_{24}\big)=0 $
No Order conditions
1 $ b_{11}(u_{11}+u_{12})+b_{12}(u_{21}+u_{22})+b_{13}(u_{31}+u_{32})-v_{12}=1 $
2 $ b_{21}(u_{11}+u_{12})+b_{22}(u_{21}+u_{22})+b_{23}(u_{31}+u_{32})=0 $
3 $ -b_{11}u_{12}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big) $
$ \qquad+v_{12}\xi_{22}=\frac{1}{2} $
4 $ -b_{21}u_{12}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)=0 $
5 $ b_{11}u_{12}^{2}+b_{12}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2} $
$ \qquad+v_{12}\xi_{23}=\frac{1}{3} $
6 $ b_{21}u_{12}^{2}+b_{22}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2}=0 $
7 $ b_{11}u_{12}\xi_{22}+b_{12}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{13}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22}) $
$ \qquad +u_{32}\xi_{22}\big)+v_{12}\xi_{24}=\frac{1}{6} $
8 $ b_{21}u_{12}\xi_{22}+b_{22}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{23}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22}) $
$ \qquad+u_{32}\xi_{22}\big)=0 $
9 $ -b_{11}u_{12}^{3}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{13}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22})-u_{32}\big)^{3} $
$ \qquad+v_{12}\xi_{25}\frac{1}{4}=\frac{1}{4} $
10 $ -b_{21}u_{12}^{3}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{23}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22}) $
$ \qquad-u_{32}\big)^{3}=0 $
11 $ -b_{11}u_{12}^{2}\xi_{22} + b_{12}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32} $
$ \qquad (u_{21}+u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)+v_{12}\xi_{26} =\frac{1}{8} $
12 $ -b_{21}u_{12}^{2}\xi_{22} + b_{22}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{23}\big(a_{31}(u_{11} + u_{12}) $
$ \qquad+a_{32}(u_{21} + u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)=0 $
13 $ b_{11}u_{12}\xi_{23} + b_{12}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{13}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2}+u_{32}\xi_{23}\big) $
$ \qquad+v_{12}\xi_{27}=\frac{1}{12} $
14 $ b_{21}u_{12}\xi_{23} + b_{22}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{23}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2} $
$ \qquad+u_{32}\xi_{23}\big)=0 $
15 $ b_{11}u_{12}\xi_{24} + b_{12}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{13}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12})+u_{32}\xi_{24}\big) $
$ \qquad+v_{12}\xi_{28}=\frac{1}{24} $
16 $ b_{21}u_{12}\xi_{24} + b_{22}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{23}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12}) $
$ \qquad+u_{32}\xi_{24}\big)=0 $
Table 4.  Coefficients Set 1 of third order GLM
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{13}{18} $ $ u_{21}=\frac{7}{9} $ $ u_{22}=\frac{2}{9} $
$ a_{31}=\frac{-17}{9} $ $ a_{32}=2 $ $ u_{31}=\frac{17}{9} $ $ u_{32}=\frac{-8}{9} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{13}{18} $ $ u_{21}=\frac{7}{9} $ $ u_{22}=\frac{2}{9} $
$ a_{31}=\frac{-17}{9} $ $ a_{32}=2 $ $ u_{31}=\frac{17}{9} $ $ u_{32}=\frac{-8}{9} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
Table 5.  Coefficients Set 2 of third order GLM
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{2}{3} $ $ u_{21}=\frac{5}{6} $ $ u_{22}=\frac{1}{6} $
$ a_{31}=\frac{-5}{3} $ $ a_{32}=2 $ $ u_{31}=\frac{5}{3} $ $ u_{32}=\frac{-2}{3} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{2}{3} $ $ u_{21}=\frac{5}{6} $ $ u_{22}=\frac{1}{6} $
$ a_{31}=\frac{-5}{3} $ $ a_{32}=2 $ $ u_{31}=\frac{5}{3} $ $ u_{32}=\frac{-2}{3} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
Table 6.  Coefficients Set 3 of third order GLM
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{5}{6} $ $ u_{21}=\frac{2}{3} $ $ u_{22}=\frac{1}{3} $
$ a_{31}=\frac{-7}{3} $ $ a_{32}=2 $ $ u_{31}=\frac{7}{3} $ $ u_{32}=\frac{-4}{3} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{5}{6} $ $ u_{21}=\frac{2}{3} $ $ u_{22}=\frac{1}{3} $
$ a_{31}=\frac{-7}{3} $ $ a_{32}=2 $ $ u_{31}=\frac{7}{3} $ $ u_{32}=\frac{-4}{3} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
Table 7.  Maximum global errors for Problem 1
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 1.2347\times 10^{-6} $ $ 4.7137\times 10^{-6} $
$ h=0.025 $ $ 9.9859\times 10^{-9} $ $ 7.1772\times 10^{-8} $
$ h=0.01 $ $ 5.6041\times 10^{-10} $ $ 4.6094\times 10^{-9} $
$ h=0.005 $ $ 6.7079\times 10^{-11} $ $ 5.7715\times 10^{-10} $
$ h=0.001 $ $ 5.1845\times 10^{-13} $ $ 4.6243\times 10^{-12} $
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 1.2347\times 10^{-6} $ $ 4.7137\times 10^{-6} $
$ h=0.025 $ $ 9.9859\times 10^{-9} $ $ 7.1772\times 10^{-8} $
$ h=0.01 $ $ 5.6041\times 10^{-10} $ $ 4.6094\times 10^{-9} $
$ h=0.005 $ $ 6.7079\times 10^{-11} $ $ 5.7715\times 10^{-10} $
$ h=0.001 $ $ 5.1845\times 10^{-13} $ $ 4.6243\times 10^{-12} $
Table 8.  Maximum global errors for Problem 2
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 2.4606\times 10^{-6} $ $ 6.9906\times 10^{-6} $
$ h=0.025 $ $ 1.6319\times 10^{-8} $ $ 1.0137\times 10^{-7} $
$ h=0.01 $ $ 8.3870\times 10^{-10} $ $ 6.4622\times 10^{-9} $
$ h=0.005 $ $ 9.7077\times 10^{-11} $ $ 8.0749\times 10^{-10} $
$ h=0.001 $ $ 7.2935\times 10^{-13} $ $ 6.4604\times 10^{-12} $
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 2.4606\times 10^{-6} $ $ 6.9906\times 10^{-6} $
$ h=0.025 $ $ 1.6319\times 10^{-8} $ $ 1.0137\times 10^{-7} $
$ h=0.01 $ $ 8.3870\times 10^{-10} $ $ 6.4622\times 10^{-9} $
$ h=0.005 $ $ 9.7077\times 10^{-11} $ $ 8.0749\times 10^{-10} $
$ h=0.001 $ $ 7.2935\times 10^{-13} $ $ 6.4604\times 10^{-12} $
Table 9.  Maximum global errors for Problem 3
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 3.9332\times 10^{-6} $ $ 4.8141\times 10^{-5} $
$ h=0.025 $ $ 1.4323\times 10^{-7} $ $ 1.4400\times 10^{-6} $
$ h=0.01 $ $ 1.0939\times 10^{-8} $ $ 1.0134\times 10^{-7} $
$ h=0.005 $ $ 1.4325\times 10^{-9} $ $ 1.3052\times 10^{-8} $
$ h=0.001 $ $ 1.1851\times 10^{-11} $ $ 1.0688\times 10^{-10} $
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 3.9332\times 10^{-6} $ $ 4.8141\times 10^{-5} $
$ h=0.025 $ $ 1.4323\times 10^{-7} $ $ 1.4400\times 10^{-6} $
$ h=0.01 $ $ 1.0939\times 10^{-8} $ $ 1.0134\times 10^{-7} $
$ h=0.005 $ $ 1.4325\times 10^{-9} $ $ 1.3052\times 10^{-8} $
$ h=0.001 $ $ 1.1851\times 10^{-11} $ $ 1.0688\times 10^{-10} $
Table 10.  Maximum global errors for Problem 4
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 4.5416\times 10^{-6} $ $ 1.4256\times 10^{-5} $
$ h=0.025 $ $ 1.7061\times 10^{-8} $ $ 2.5908\times 10^{-7} $
$ h=0.01 $ $ 1.4270\times 10^{-9} $ $ 1.7075\times 10^{-8} $
$ h=0.005 $ $ 2.1002\times 10^{-10} $ $ 2.1553\times 10^{-9} $
$ h=0.001 $ $ 1.8836\times 10^{-12} $ $ 1.7377\times 10^{-11} $
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 4.5416\times 10^{-6} $ $ 1.4256\times 10^{-5} $
$ h=0.025 $ $ 1.7061\times 10^{-8} $ $ 2.5908\times 10^{-7} $
$ h=0.01 $ $ 1.4270\times 10^{-9} $ $ 1.7075\times 10^{-8} $
$ h=0.005 $ $ 2.1002\times 10^{-10} $ $ 2.1553\times 10^{-9} $
$ h=0.001 $ $ 1.8836\times 10^{-12} $ $ 1.7377\times 10^{-11} $
Table 11.  Maximum global errors for Problem 5
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 6.3429\times 10^{-6} $ $ 3.3432\times 10^{-5} $
$ h=0.025 $ $ 4.4142\times 10^{-8} $ $ 6.3237\times 10^{-7} $
$ h=0.01 $ $ 4.0164\times 10^{-9} $ $ 4.1259\times 10^{-8} $
$ h=0.005 $ $ 5.4245\times 10^{-10} $ $ 5.1811\times 10^{-9} $
$ h=0.001 $ $ 4.5689\times 10^{-12} $ $ 4.1572\times 10^{-11} $
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 6.3429\times 10^{-6} $ $ 3.3432\times 10^{-5} $
$ h=0.025 $ $ 4.4142\times 10^{-8} $ $ 6.3237\times 10^{-7} $
$ h=0.01 $ $ 4.0164\times 10^{-9} $ $ 4.1259\times 10^{-8} $
$ h=0.005 $ $ 5.4245\times 10^{-10} $ $ 5.1811\times 10^{-9} $
$ h=0.001 $ $ 4.5689\times 10^{-12} $ $ 4.1572\times 10^{-11} $
Table 12.  Total number of function evaluations Problems 1 - 5
GLM, $ s=3 $ RK, $ s=3 $
Step size TFE
$ h=0.1 $ $ 34 $ $ 34 $
$ h=0.025 $ $ 124 $ $ 124 $
$ h=0.01 $ $ 304 $ $ 304 $
$ h=0.005 $ $ 604 $ $ 604 $
$ h=0.001 $ $ 3004 $ $ 3004 $
GLM, $ s=3 $ RK, $ s=3 $
Step size TFE
$ h=0.1 $ $ 34 $ $ 34 $
$ h=0.025 $ $ 124 $ $ 124 $
$ h=0.01 $ $ 304 $ $ 304 $
$ h=0.005 $ $ 604 $ $ 604 $
$ h=0.001 $ $ 3004 $ $ 3004 $
[1]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[2]

Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064

[3]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial and Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[4]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[5]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053

[6]

William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309-329. doi: 10.3934/steme.2021020

[7]

Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure and Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261

[8]

Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053

[9]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[10]

Dariusz Idczak, Stanisław Walczak. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2281-2292. doi: 10.3934/dcdsb.2019095

[11]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[12]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021051

[13]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems on degenerate integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022025

[14]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[15]

Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations and Control Theory, 2022, 11 (1) : 1-24. doi: 10.3934/eect.2020100

[16]

Kun-Peng Jin, Jin Liang, Ti-Jun Xiao. Uniform polynomial stability of second order integro-differential equations in Hilbert spaces with positive definite kernels. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3141-3166. doi: 10.3934/dcdss.2021077

[17]

Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004

[18]

Imtiaz Ahmad, Siraj-ul-Islam, Mehnaz, Sakhi Zaman. Local meshless differential quadrature collocation method for time-fractional PDEs. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2641-2654. doi: 10.3934/dcdss.2020223

[19]

Willy Sarlet, Tom Mestdag. Compatibility aspects of the method of phase synchronization for decoupling linear second-order differential equations. Journal of Geometric Mechanics, 2022, 14 (1) : 91-104. doi: 10.3934/jgm.2021019

[20]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

 Impact Factor: 

Metrics

  • PDF downloads (770)
  • HTML views (647)
  • Cited by (1)

[Back to Top]