\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation

  • * Corresponding author: Jie Song

    * Corresponding author: Jie Song

The second author is supported by NSF of Guangdong Province of China (S2012010010069).The third author is supported by the High-level talents Project of Guangdong Province Colleges and universities (2013-178)

Abstract Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • In this paper, the existence and uniqueness of solution for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative are studied. The estimation of error between the approximate solution and the solution for such equation is presented by employing the quasilinear iterative method, and an example is given to demonstrate the application of our main result.

    Mathematics Subject Classification: Primary: 26A33, 34A08, 34B15; Secondary: 47J25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  he numerical results

    $ t $ $ x_{1}(t) $ $ x_{2}(t) $ $ x_{3}(t) $ $ x_{4}(t) $ ...... $ x_{9}(t) $ $ x_{10}(t) $ $ z^{*}(t) $
    0.0000 0.0000 0.0000 0.0000 0.0000 ...... 0.0000 0.0000 0.0000
    0.1111 -0.0083 -0.0072 -0.0075 -0.0074 ...... -0.0074 -0.0074 -0.0074
    0.2222 -0.0164 -0.0140 -0.0146 -0.0145 ...... -0.0145 -0.0145 -0.0145
    0.3333 -0.0241 -0.0202 -0.0211 -0.0210 ...... -0.0210 -0.0210 -0.0210
    0.4444 -0.0315 -0.0258 -0.0269 -0.0267 ...... -0.0267 -0.0267 -0.0267
    0.5556 -0.0383 -0.0305 -0.0318 -0.0317 ...... -0.0317 -0.0317 -0.0317
    0.6667 -0.0447 -0.0344 -0.0359 -0.0357 ...... -0.0357 -0.0357 -0.0357
    0.7778 -0.0505 -0.0372 -0.0389 -0.0387 ...... -0.0387 -0.0387 -0.0387
    0.8889 -0.0557 -0.0390 -0.0407 -0.0406 ...... -0.0406 -0.0406 -0.0406
    1.0000 -0.0602 -0.0396 -0.0414 -0.0412 ...... -0.0412 -0.0412 -0.0412
     | Show Table
    DownLoad: CSV
  • [1] R. P. AgarwalM. Benchohra and S. Hamani, Boundary value problems for fractional differential equations, Georgian Mathe. J., 16 (2009), 401-411.  doi: 10.1007/s10440-008-9356-6.
    [2] R. P. AgarwalY. Zhou and Y.-Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095-1100.  doi: 10.1016/j.camwa.2009.05.010.
    [3] M. BenchohraS. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl., 3 (2008), 1-12. 
    [4] M. BenchohraS. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal., 71 (2009), 2391-2396.  doi: 10.1016/j.na.2009.01.073.
    [5] J. Brzdek and N. Eghbali, On approximate solutions of some delayed fractional differential equations, Appl. Math. Lett., 54 (2016), 31-35.  doi: 10.1016/j.aml.2015.10.004.
    [6] J.-W. DengL.-J. Zhao and Y.-J. Wu, Efficient algorithms for solving the fractional ordinary differential equations, Appl. Math. Comput., 269 (2015), 196-216.  doi: 10.1016/j.amc.2015.07.048.
    [7] A. M. A. El-Sayed, Fractional differential equations, Kyungpook Math. J., 28 (1988), 119-122. 
    [8] J.-H. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15 (1999), 86-90. 
    [9] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/9789812817747.
    [10] V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828-834. doi: 10.1016/j.aml.2007.09.006.
    [11] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682.  doi: 10.1016/j.na.2007.08.042.
    [12] V. Lakshmikantham and J. V. Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38-45. 
    [13] C. LiQ. Yi and A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614-631.  doi: 10.1016/j.jcp.2016.04.039.
    [14] H. Liang and M. Stynes, Collocation methods for general Caputo two-point boundary value problems, J. Sci. Comput., 76 (2018), 390-425.  doi: 10.1007/s10915-017-0622-5.
    [15] P. LyuS. Vong and Z. Wang, A finite difference method for boundary value problems of a Caputo fractional differential equation, East. Asia. J. Appl. Math., 7 (2017), 752-766.  doi: 10.4208/eajam.181016.300517e.
    [16] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, INC., New York, 1993.
    [17] K. B. Oldham and  J. SpanierThe Fractional Calculus, Academic Press, New York, London, 1974. 
    [18] I. PodlubnyFractional Differential Equations, Mathematics in Science and Engineering, vol. 198, Academic Press, New York, 1999. 
    [19] M. Stynes and J.-L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative, IMA J. Numer. Anal., 35 (2015), 698-721.  doi: 10.1093/imanum/dru011.
    [20] Y.-F. Sun and P.-G. Wang, Quasilinear iterative scheme for a fourth-order differential equation with retardation and anticipation, Appl. Math. Comput., 217 (2010), 3442-3452.  doi: 10.1016/j.amc.2010.09.011.
    [21] Y.-F. SunZ. Zeng and J. Song, Existence and uniqueness for the boundary value problems of nonlinear fractional differential equation, Appl. Math., 8 (2017), 312-323. 
    [22] P.-G. WangS.-H. Tian and Y.-H. Wu, Monotone iterative method for first-order functional difference equations with nonlinear boundary value conditions, Appl. Math. Comput., 203 (2008), 266-272.  doi: 10.1016/j.amc.2008.04.033.
    [23] P.-G. WangH.-X. Wu and Y.-H. Wu, Higher even-order convergence and coupled solutions for second-order boundary value problems on time scales, Comput. Math. Appl., 55 (2008), 1693-1705.  doi: 10.1016/j.camwa.2007.06.026.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(640) PDF downloads(385) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return