
-
Previous Article
On a new smoothing technique for non-smooth, non-convex optimization
- NACO Home
- This Issue
-
Next Article
Numerical solution of bilateral obstacle optimal control problem, where the controls and the obstacles coincide
On fractional quadratic optimization problem with two quadratic constraints
1. | Faculty of Mathematics Statistics and Computer Science, Semnan University, Semnan, Iran |
2. | Faculty of Mathematical Sciences and, Center of Excellence for Mathematical Modeling, Optimization and Combinatorial Computing (MMOCC), University of Guilan, Rasht, Iran |
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to two quadratic constraints in the complex space. Using the classical Dinkelbach method, we transform the problem into a parametric nonlinear equation. We show that an optimal parameter can be found by employing the S-procedure and semidefinite relaxation technique. A key element to solve the original problem is to use the rank-one decomposition procedure. Finally, within the new algorithm, semidefinite relaxation is compared with the bisection method for finding the root on several examples. For further comparison, the solution of fmincon command of MATLAB also is reported.
References:
[1] |
R. A. Abrams,
Nonlinear programming in complex space: sufficient conditions and duality, Journal of Mathematical Analysis and Applications, 38 (1972), 619-632.
doi: 10.1016/0022-247X(72)90073-X. |
[2] |
R. A. Abrams and A. Ben-Israel,
Nonlinear programming in complex space: necessary conditions, SIAM Journal on Control, 9 (1971), 606-620.
|
[3] |
A. Aubry, V. Carotenuto and A. De Maio,
New results on generalized fractional programming problems with toeplitz quadratics, IEEE Signal Processing Letters, 23 (2016), 848-852.
|
[4] |
A. Aubry, A. De Maio, Y. Huang and M. Piezzo,
Robust design of radar doppler filters, IEEE Transactions on Signal Processing, 64 (2016), 5848-5860.
doi: 10.1109/TSP.2016.2576423. |
[5] |
T. Baleshan, A. Jayalath and J. Coetzee,
On power minimisation and snr maximisation of distributed beamforming in cooperative communication systems, Electronics Letters, 50 (2014), 712-713.
|
[6] |
O. Besson,
Adaptive detection with bounded steering vectors mismatch angle, IEEE Transactions on Signal Processing, 55 (2007), 1560-1564.
doi: 10.1109/TSP.2006.890820. |
[7] |
H. Cai, Y. Wang and T. Yi,
An approach for minimizing a quadratically constrained fractional quadratic problem with application to the communications over wireless channels, Optimization Methods and Software, 29 (2014), 310-320.
|
[8] |
H. Chen, S. Shahbazpanahi and A. B. Gershman,
Filter-and-forward distributed beamforming for two-way relay networks with frequency selective channels, IEEE Transactions on Signal Processing, 60 (2011), 1927-1941.
doi: 10.1109/TSP.2011.2178842. |
[9] |
J. Chen, H. Lai and S. Schaible,
Complex fractional programming and the charnes-cooper transformation, Journal of Optimization Theory and Applications, 126 (2005), 203-213.
doi: 10.1007/s10957-005-2669-y. |
[10] |
A. De Maio, Y. Huang, D. P. Palomar, S. Zhang and A. Farina,
Fractional qcqp with applications in ml steering direction estimation for radar detection, IEEE Transactions on Signal Processing, 59 (2010), 172-185.
doi: 10.1109/TSP.2010.2087327. |
[11] |
W. Dinkelbach,
On nonlinear fractional programming, Management Science, 13 (1967), 492-498.
doi: 10.1287/mnsc.13.7.492. |
[12] |
S. Fallahi and M. Salahi,
On the complex fractional quadratic optimization with a quadratic constraint, Opsearch, 54 (2017), 94-106.
doi: 10.1007/s12597-016-0263-8. |
[13] |
M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, Version 2.1, 2014.
doi: 10.1145/2700586. |
[14] |
J. Hsiao,
On the optimization of mti clutter rejection, IEEE Transactions on Aerospace and Electronic Systems, AES-10 (1974), 622-629.
|
[15] |
Y. Huang and S. Zhang,
Complex matrix decomposition and quadratic programming, Mathematics of Operations Research, 32 (2007), 758-768.
doi: 10.1287/moor.1070.0268. |
[16] |
R. Jagannathan,
On some properties of programming problems in parametric form pertaining to fractional programming, Management Science, 12 (1966), 609-615.
doi: 10.1287/mnsc.12.7.609. |
[17] |
V. Jeyakumar, N. Q. Huy and G. Li, Necessary and sufficient conditions for s-lemma and nonconvex quadratic optimization, Optimization and Engineering, 10 (2009), 491.
doi: 10.1007/s11081-008-9076-9. |
[18] |
U. T. Jönsson,
A lecture on the s-procedure, Lecture Note at the Royal Institute of Technology, Sweden, 23 (2001), 34-36.
|
[19] |
N. Levinson,
Linear programming in complex space, Journal of Mathematical Analysis and Applications, 14 (1966), 44-62.
doi: 10.1016/0022-247X(66)90061-8. |
[20] |
V.-B. Nguyen, R.-L. Sheu and Y. Xia,
An SDP approach for quadratic fractional problems with a two-sided quadratic constraint, Optimization Methods and Software, 31 (2016), 701-719.
doi: 10.1080/10556788.2015.1029575. |
[21] |
I. Pólik and T. Terlaky,
A survey of the s-lemma, SIAM Review, 49 (2007), 371-418.
doi: 10.1137/S003614450444614X. |
[22] |
M. Salahi and A. Zare,
SDO relaxation approach to fractional quadratic minimization with one quadratic constraint, Journal of Mathematical Modeling, 3 (2015), 1-13.
|
[23] |
R. L. Sheu, An SDP approach for some quadratic fractional problems (nonlinear analysis and convex analysis). |
[24] |
J. F. Sturm and S. Zhang,
On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246-267.
doi: 10.1287/moor.28.2.246.14485. |
[25] |
K. Swarup and J. Sharma, Programming with linear fractional functionals in complex spaces, Cahiers du centre Études et de Recherche Opérationelle, 12 (1970), 103–109. |
[26] |
T. Yi, L. Guo, K. Niu, H. Cai, J. Lin and W. Ai, Cooperative beamforming in cognitive radio network with hybrid relay, in 2012 19th International Conference on Telecommunications (ICT), IEEE, (2012), 1–5. |
[27] |
A. Zhang and S. Hayashi,
Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints, Numer. Algebra, Control and Optim., 1 (2011), 83-98.
doi: 10.3934/naco.2011.1.83. |
[28] |
X. Zhang, Z. He, X. Zhang and W. Peng,
High-performance beampattern synthesis via linear fractional semidefinite relaxation and quasi-convex optimization, IEEE Transactions on Antennas and Propagation, 66 (2018), 3421-3431.
|
show all references
References:
[1] |
R. A. Abrams,
Nonlinear programming in complex space: sufficient conditions and duality, Journal of Mathematical Analysis and Applications, 38 (1972), 619-632.
doi: 10.1016/0022-247X(72)90073-X. |
[2] |
R. A. Abrams and A. Ben-Israel,
Nonlinear programming in complex space: necessary conditions, SIAM Journal on Control, 9 (1971), 606-620.
|
[3] |
A. Aubry, V. Carotenuto and A. De Maio,
New results on generalized fractional programming problems with toeplitz quadratics, IEEE Signal Processing Letters, 23 (2016), 848-852.
|
[4] |
A. Aubry, A. De Maio, Y. Huang and M. Piezzo,
Robust design of radar doppler filters, IEEE Transactions on Signal Processing, 64 (2016), 5848-5860.
doi: 10.1109/TSP.2016.2576423. |
[5] |
T. Baleshan, A. Jayalath and J. Coetzee,
On power minimisation and snr maximisation of distributed beamforming in cooperative communication systems, Electronics Letters, 50 (2014), 712-713.
|
[6] |
O. Besson,
Adaptive detection with bounded steering vectors mismatch angle, IEEE Transactions on Signal Processing, 55 (2007), 1560-1564.
doi: 10.1109/TSP.2006.890820. |
[7] |
H. Cai, Y. Wang and T. Yi,
An approach for minimizing a quadratically constrained fractional quadratic problem with application to the communications over wireless channels, Optimization Methods and Software, 29 (2014), 310-320.
|
[8] |
H. Chen, S. Shahbazpanahi and A. B. Gershman,
Filter-and-forward distributed beamforming for two-way relay networks with frequency selective channels, IEEE Transactions on Signal Processing, 60 (2011), 1927-1941.
doi: 10.1109/TSP.2011.2178842. |
[9] |
J. Chen, H. Lai and S. Schaible,
Complex fractional programming and the charnes-cooper transformation, Journal of Optimization Theory and Applications, 126 (2005), 203-213.
doi: 10.1007/s10957-005-2669-y. |
[10] |
A. De Maio, Y. Huang, D. P. Palomar, S. Zhang and A. Farina,
Fractional qcqp with applications in ml steering direction estimation for radar detection, IEEE Transactions on Signal Processing, 59 (2010), 172-185.
doi: 10.1109/TSP.2010.2087327. |
[11] |
W. Dinkelbach,
On nonlinear fractional programming, Management Science, 13 (1967), 492-498.
doi: 10.1287/mnsc.13.7.492. |
[12] |
S. Fallahi and M. Salahi,
On the complex fractional quadratic optimization with a quadratic constraint, Opsearch, 54 (2017), 94-106.
doi: 10.1007/s12597-016-0263-8. |
[13] |
M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, Version 2.1, 2014.
doi: 10.1145/2700586. |
[14] |
J. Hsiao,
On the optimization of mti clutter rejection, IEEE Transactions on Aerospace and Electronic Systems, AES-10 (1974), 622-629.
|
[15] |
Y. Huang and S. Zhang,
Complex matrix decomposition and quadratic programming, Mathematics of Operations Research, 32 (2007), 758-768.
doi: 10.1287/moor.1070.0268. |
[16] |
R. Jagannathan,
On some properties of programming problems in parametric form pertaining to fractional programming, Management Science, 12 (1966), 609-615.
doi: 10.1287/mnsc.12.7.609. |
[17] |
V. Jeyakumar, N. Q. Huy and G. Li, Necessary and sufficient conditions for s-lemma and nonconvex quadratic optimization, Optimization and Engineering, 10 (2009), 491.
doi: 10.1007/s11081-008-9076-9. |
[18] |
U. T. Jönsson,
A lecture on the s-procedure, Lecture Note at the Royal Institute of Technology, Sweden, 23 (2001), 34-36.
|
[19] |
N. Levinson,
Linear programming in complex space, Journal of Mathematical Analysis and Applications, 14 (1966), 44-62.
doi: 10.1016/0022-247X(66)90061-8. |
[20] |
V.-B. Nguyen, R.-L. Sheu and Y. Xia,
An SDP approach for quadratic fractional problems with a two-sided quadratic constraint, Optimization Methods and Software, 31 (2016), 701-719.
doi: 10.1080/10556788.2015.1029575. |
[21] |
I. Pólik and T. Terlaky,
A survey of the s-lemma, SIAM Review, 49 (2007), 371-418.
doi: 10.1137/S003614450444614X. |
[22] |
M. Salahi and A. Zare,
SDO relaxation approach to fractional quadratic minimization with one quadratic constraint, Journal of Mathematical Modeling, 3 (2015), 1-13.
|
[23] |
R. L. Sheu, An SDP approach for some quadratic fractional problems (nonlinear analysis and convex analysis). |
[24] |
J. F. Sturm and S. Zhang,
On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246-267.
doi: 10.1287/moor.28.2.246.14485. |
[25] |
K. Swarup and J. Sharma, Programming with linear fractional functionals in complex spaces, Cahiers du centre Études et de Recherche Opérationelle, 12 (1970), 103–109. |
[26] |
T. Yi, L. Guo, K. Niu, H. Cai, J. Lin and W. Ai, Cooperative beamforming in cognitive radio network with hybrid relay, in 2012 19th International Conference on Telecommunications (ICT), IEEE, (2012), 1–5. |
[27] |
A. Zhang and S. Hayashi,
Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints, Numer. Algebra, Control and Optim., 1 (2011), 83-98.
doi: 10.3934/naco.2011.1.83. |
[28] |
X. Zhang, Z. He, X. Zhang and W. Peng,
High-performance beampattern synthesis via linear fractional semidefinite relaxation and quasi-convex optimization, IEEE Transactions on Antennas and Propagation, 66 (2018), 3421-3431.
|
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue | time(s) |
50 | 1 | 1.201032e-01 | 1.201036e-01 | 0.2703 | 1.201032e-01 | 1.201036e-01 | 5.0101 | 1.397555e-01 | 0.0117 |
100 | 1 | 1.881241e-01 | 1.881249e-01 | 1.086:3 | 1.881241e-01 | 1.881249e-01 | 20.5448 | 1.987974e-01 | 0.0139 |
150 | 1 | 1.643814e-01 | 1.643875e-01 | 2.5524 | 1.643814e-01 | 1.643875e-01 | 50.1663 | 1.698622e-01 | 0.0174 |
200 | 1 | 1.558427e-01 | 1.558441e-01 | 5.9194 | 1.558427e-01 | 1.558441e-01 | 153.8498 | 1.755857e-01 | 0.0194 |
250 | 1 | 2.366953e-01 | 2.366986e-01 | 8.1471 | 2.366953e-01 | 2.366986e-01 | 226.1209 | 2.841313e-01 | 0.0269 |
50 | 0.5 | 1.193231e-02 | 1.193236e-02 | 0.2473 | 1.193231e-02 | 1.193236e-02 | 4.7561 | 1.958082e-02 | 0.0109 |
100 | 0.5 | 1.446475e-01 | 1.446483e-01 | 0.9903 | 1.446475e-01 | 1.446483e-01 | 18.3720 | 1.596917e-01 | 0.0128 |
150 | 0.5 | 1.024333e-01 | 1.024354e-01 | 2.4031 | 1.024333e-01 | 1.024354e-01 | 43.7765 | 1.129475e-01 | 0.0167 |
200 | 0.5 | 2.134589e-01 | 2.134593e-01 | 5.3849 | 2.371164e-01 | 0.0173 | |||
250 | 0.5 | 2.103671e-01 | 2.103684e-01 | 7.9862 | 2.278996e-01 | 0.0238 | |||
300 | 0.5 | 1.507763e-01 | 1.507789e-01 | 14.7993 | 1.631893e-01 | 0.0237 | |||
50 | 0.25 | 1.097243e-01 | 1.097248e-01 | 0.2444 | 1.097243e-01 | 1.097248e-01 | 4.4489 | 2.862603e-01 | 0.0098 |
100 | 0.25 | 3.690304e-01 | 3.690309e-01 | 0.9323 | 3.690304e-01 | 3.690309e-01 | 12.7842 | 3.791923e-01 | 0.0121 |
150 | 0.25 | 1.816562e-01 | 1.816565e-01 | 2.7160 | 1.816562^01 | 1.816565e-01 | 64.4395 | 1.944783e-01 | 0.0161 |
200 | 0.25 | 2.123675e-01 | 2.123678e-01 | 5.0127 | 2.897431e-01 | 0.0159 | |||
250 | 0.25 | 2.325119e-01 | 2.325124e-01 | 7.5622 | 2.666913e-01 | 0.0198 | |||
300 | 0.25 | 1.394089e-01 | 1.394093e-01 | 14.3163 | 1.534687e-01 | 0.0219 | |||
50 | 0.1 | 2.029650e-01 | 2.029654e-01 | 0.2021 | 2.029650e-01 | 2.029654e-01 | 3.8651 | 2.273829e-01 | 0.0086 |
100 | 0.1 | 4.695384e-01 | 4.695387e-01 | 0.8796 | 4.695384e-01 | 4.695387e-01 | 12.1470 | 4.812845e-01 | 0.0117 |
150 | 0.1 | 1.325870e-01 | 1.325874e-01 | 2.5595 | 1.325870e-01 | 1.325874e-01 | 49.9254 | 1.470531e-01 | 0.0144 |
200 | 0.1 | 1.442915e-01 | 1.442918e-01 | 4.8677 | 1.700139e-01 | 0.0151 | |||
250 | 0.1 | 4.210943e-01 | 4.210946e-01 | 7.1247 | 4.512736e-01 | 0.0179 | |||
300 | 0.1 | 1.547663e-01 | 1.547C71e-01 | 13.9812 | 1.673333e-01 | 0.0204 | |||
350 | 0.1 | 3.037856e-01 | 3.037861e-01 | 19.2776 | 3.293677e-01 | 0.0245 | |||
100 | 0.01 | 3.132863e-02 | 3.132868e-02 | 0.6293 | 3.132863e-02 | 3.132868e-02 | 11.4868 | 3.693282e-02 | 0.0117 |
150 | 0.01 | 1.423572e-02 | 1.423577e-02 | 1.5306 | 1.423572e-02 | 1.423577e-02 | 37.9483 | 3.092266e-02 | 0.0128 |
200 | 0.01 | 3.145664e-01 | 3.145669e-01 | 4.2319 | 3.364780e-01 | 0.0139 | |||
250 | 0.01 | 2.597103e-02 | 2.597105e-02 | 6.8963 | 2.777693e-02 | 0.0167 | |||
300 | 0.01 | 1.201043e-01 | 1.201049e-01 | 13.4639 | 1.537038e-01 | 0.0192 | |||
350 | 0.01 | 2.167836e-02 | 2.167842e-02 | 18.6749 | 2.478134e-02 | 0.0235 | |||
400 | 0.01 | 4.531146^01 | 4.531156e-01 | 24.1313 | 4.972134e-01 | 0.0263 |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue | time(s) |
50 | 1 | 1.201032e-01 | 1.201036e-01 | 0.2703 | 1.201032e-01 | 1.201036e-01 | 5.0101 | 1.397555e-01 | 0.0117 |
100 | 1 | 1.881241e-01 | 1.881249e-01 | 1.086:3 | 1.881241e-01 | 1.881249e-01 | 20.5448 | 1.987974e-01 | 0.0139 |
150 | 1 | 1.643814e-01 | 1.643875e-01 | 2.5524 | 1.643814e-01 | 1.643875e-01 | 50.1663 | 1.698622e-01 | 0.0174 |
200 | 1 | 1.558427e-01 | 1.558441e-01 | 5.9194 | 1.558427e-01 | 1.558441e-01 | 153.8498 | 1.755857e-01 | 0.0194 |
250 | 1 | 2.366953e-01 | 2.366986e-01 | 8.1471 | 2.366953e-01 | 2.366986e-01 | 226.1209 | 2.841313e-01 | 0.0269 |
50 | 0.5 | 1.193231e-02 | 1.193236e-02 | 0.2473 | 1.193231e-02 | 1.193236e-02 | 4.7561 | 1.958082e-02 | 0.0109 |
100 | 0.5 | 1.446475e-01 | 1.446483e-01 | 0.9903 | 1.446475e-01 | 1.446483e-01 | 18.3720 | 1.596917e-01 | 0.0128 |
150 | 0.5 | 1.024333e-01 | 1.024354e-01 | 2.4031 | 1.024333e-01 | 1.024354e-01 | 43.7765 | 1.129475e-01 | 0.0167 |
200 | 0.5 | 2.134589e-01 | 2.134593e-01 | 5.3849 | 2.371164e-01 | 0.0173 | |||
250 | 0.5 | 2.103671e-01 | 2.103684e-01 | 7.9862 | 2.278996e-01 | 0.0238 | |||
300 | 0.5 | 1.507763e-01 | 1.507789e-01 | 14.7993 | 1.631893e-01 | 0.0237 | |||
50 | 0.25 | 1.097243e-01 | 1.097248e-01 | 0.2444 | 1.097243e-01 | 1.097248e-01 | 4.4489 | 2.862603e-01 | 0.0098 |
100 | 0.25 | 3.690304e-01 | 3.690309e-01 | 0.9323 | 3.690304e-01 | 3.690309e-01 | 12.7842 | 3.791923e-01 | 0.0121 |
150 | 0.25 | 1.816562e-01 | 1.816565e-01 | 2.7160 | 1.816562^01 | 1.816565e-01 | 64.4395 | 1.944783e-01 | 0.0161 |
200 | 0.25 | 2.123675e-01 | 2.123678e-01 | 5.0127 | 2.897431e-01 | 0.0159 | |||
250 | 0.25 | 2.325119e-01 | 2.325124e-01 | 7.5622 | 2.666913e-01 | 0.0198 | |||
300 | 0.25 | 1.394089e-01 | 1.394093e-01 | 14.3163 | 1.534687e-01 | 0.0219 | |||
50 | 0.1 | 2.029650e-01 | 2.029654e-01 | 0.2021 | 2.029650e-01 | 2.029654e-01 | 3.8651 | 2.273829e-01 | 0.0086 |
100 | 0.1 | 4.695384e-01 | 4.695387e-01 | 0.8796 | 4.695384e-01 | 4.695387e-01 | 12.1470 | 4.812845e-01 | 0.0117 |
150 | 0.1 | 1.325870e-01 | 1.325874e-01 | 2.5595 | 1.325870e-01 | 1.325874e-01 | 49.9254 | 1.470531e-01 | 0.0144 |
200 | 0.1 | 1.442915e-01 | 1.442918e-01 | 4.8677 | 1.700139e-01 | 0.0151 | |||
250 | 0.1 | 4.210943e-01 | 4.210946e-01 | 7.1247 | 4.512736e-01 | 0.0179 | |||
300 | 0.1 | 1.547663e-01 | 1.547C71e-01 | 13.9812 | 1.673333e-01 | 0.0204 | |||
350 | 0.1 | 3.037856e-01 | 3.037861e-01 | 19.2776 | 3.293677e-01 | 0.0245 | |||
100 | 0.01 | 3.132863e-02 | 3.132868e-02 | 0.6293 | 3.132863e-02 | 3.132868e-02 | 11.4868 | 3.693282e-02 | 0.0117 |
150 | 0.01 | 1.423572e-02 | 1.423577e-02 | 1.5306 | 1.423572e-02 | 1.423577e-02 | 37.9483 | 3.092266e-02 | 0.0128 |
200 | 0.01 | 3.145664e-01 | 3.145669e-01 | 4.2319 | 3.364780e-01 | 0.0139 | |||
250 | 0.01 | 2.597103e-02 | 2.597105e-02 | 6.8963 | 2.777693e-02 | 0.0167 | |||
300 | 0.01 | 1.201043e-01 | 1.201049e-01 | 13.4639 | 1.537038e-01 | 0.0192 | |||
350 | 0.01 | 2.167836e-02 | 2.167842e-02 | 18.6749 | 2.478134e-02 | 0.0235 | |||
400 | 0.01 | 4.531146^01 | 4.531156e-01 | 24.1313 | 4.972134e-01 | 0.0263 |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue time(s) | |
50 | 1 | 9.963074e-02 | 9.963075e-02 | 0.2313 | 9.963074-02 | 9.963075e-02 | 3.8289 | — | |
100 | 1 | 2.954031e-02 | 2.954037e-02 | 1.0432 | 2.954031e-02 | 2.954037e-02 | 18.6609 | — | |
150 | 1 | 1.079322e-01 | L079326e-01 | 2.7307 | 1.079322e-01 | 1.079326e-01 | 47.8104 | — | |
200 | 1 | 1.594683e-01 | 1.594686e-01 | 5.8439 | — | ||||
250 | 1 | 2.374876e-01 | 2.374887e-01 | 8.5416 | — | ||||
50 | 0.5 | 2.644901e-02 | 2.644909e-02 | 0.2574 | 2.644901e-02 | 2.644909e-02 | 4.2066 | — | |
100 | 0.5 | 2.299581e-01 | 2.299585e-01 | 1.0217 | 2.299581e-01 | 2.299585e-01 | 19.3125 | ||
150 | 0.5 | 1.444501e-01 | 1.444506e-01 | 2.2918 | 1.444501e-01 | 1.444506e-01 | 44.9254 | — | |
200 | 0.5 | 3.724168e-01 | 3.724173e-01 | 5.4688 | — | ||||
250 | 0.5 | 2.552464e-01 | 2.552473e-01 | 8.2069 | — | ||||
300 | 0.5 | 2.941125e-01 | 2.941131e-01 | 16.0230 | |||||
50 | 0.25 | 1.076935e-02 | 1.076939e-02 | 0.2603 | 1.076935e-02 | 1.076939e-02 | 5.0748 | — | |
100 | 0.25 | 1.768924e-02 | 1.768927e-02 | 0.9174 | 1.768924e-02 | 1.768927e-02 | 12.5113 | — | |
150 | 0.25 | 2.993642e-01 | 2.993644e-01 | 2.0326 | 2.993642e-01 | 2.993644e-01 | 41.9702 | — | |
200 | 0.25 | 3.366870e-01 | 3.366874e-01 | 4.9010 | — | ||||
250 | 0.25 | 1.883748e-01 | 1.883755e-02 | 7.2461 | — | ||||
300 | 0.25 | 1.649437e-01 | 1.649446e-01 | 15.3795 | |||||
50 | 0.1 | 1.692921e-01 | 1.692924e-01 | 0.2097 | 1.692921e-01 | 1.692924e-01 | 3.9190 | — | |
100 | 0.1 | 1.942553e-01 | 1.942554e-01 | 0.9273 | 1.942553e-01 | 1.942554e-01 | 11.9908 | — | |
150 | 0.1 | 2.121414e-02 | 2.121419e-02 | 1.9469 | 2.121414e-02 | 2.121419e-02 | 40.4315 | — | |
200 | 0.1 | 2.737760e-01 | 2.737764e-01 | 4.8436 | — | ||||
250 | 0.1 | 1.803547e-01 | 1803554e-01 | 7.3638 | — | ||||
300 | 0.1 | 3.003607e-01 | 3.003612e-01 | 14.2789 | — | ||||
350 | 0.1 | 2.941177e-01 | 2.941187e-01 | 20.2413 | — | ||||
100 | 0.01 | 1.462551e-02 | 1.462558e-02 | 0.6089 | 1.462558e-02 | 1.462558e-02 | 11.6858 | — | |
150 | 0.01 | 1.371044e-01 | 1.371049e-01 | 1.4294 | 1.371044e-01 | 1.371049e-01 | 38.2468 | — | |
200 | 0.01 | 2.910353e-01 | 2.910355e-01 | 4.4201 | — | ||||
250 | 0.01 | 1.110103e-01 | 1.110109e-01 | 6.5731 | — | ||||
300 | 0.01 | 3.831475e-01 | 3.831484e-01 | 13.8774 | — | ||||
350 | 0.01 | 1.301978e-01 | 1.301985e-01 | 19.2763 | |||||
400 | 0.01 | 2.705236e-01 | 2.705243e-01 | 23.9422 | — |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue time(s) | |
50 | 1 | 9.963074e-02 | 9.963075e-02 | 0.2313 | 9.963074-02 | 9.963075e-02 | 3.8289 | — | |
100 | 1 | 2.954031e-02 | 2.954037e-02 | 1.0432 | 2.954031e-02 | 2.954037e-02 | 18.6609 | — | |
150 | 1 | 1.079322e-01 | L079326e-01 | 2.7307 | 1.079322e-01 | 1.079326e-01 | 47.8104 | — | |
200 | 1 | 1.594683e-01 | 1.594686e-01 | 5.8439 | — | ||||
250 | 1 | 2.374876e-01 | 2.374887e-01 | 8.5416 | — | ||||
50 | 0.5 | 2.644901e-02 | 2.644909e-02 | 0.2574 | 2.644901e-02 | 2.644909e-02 | 4.2066 | — | |
100 | 0.5 | 2.299581e-01 | 2.299585e-01 | 1.0217 | 2.299581e-01 | 2.299585e-01 | 19.3125 | ||
150 | 0.5 | 1.444501e-01 | 1.444506e-01 | 2.2918 | 1.444501e-01 | 1.444506e-01 | 44.9254 | — | |
200 | 0.5 | 3.724168e-01 | 3.724173e-01 | 5.4688 | — | ||||
250 | 0.5 | 2.552464e-01 | 2.552473e-01 | 8.2069 | — | ||||
300 | 0.5 | 2.941125e-01 | 2.941131e-01 | 16.0230 | |||||
50 | 0.25 | 1.076935e-02 | 1.076939e-02 | 0.2603 | 1.076935e-02 | 1.076939e-02 | 5.0748 | — | |
100 | 0.25 | 1.768924e-02 | 1.768927e-02 | 0.9174 | 1.768924e-02 | 1.768927e-02 | 12.5113 | — | |
150 | 0.25 | 2.993642e-01 | 2.993644e-01 | 2.0326 | 2.993642e-01 | 2.993644e-01 | 41.9702 | — | |
200 | 0.25 | 3.366870e-01 | 3.366874e-01 | 4.9010 | — | ||||
250 | 0.25 | 1.883748e-01 | 1.883755e-02 | 7.2461 | — | ||||
300 | 0.25 | 1.649437e-01 | 1.649446e-01 | 15.3795 | |||||
50 | 0.1 | 1.692921e-01 | 1.692924e-01 | 0.2097 | 1.692921e-01 | 1.692924e-01 | 3.9190 | — | |
100 | 0.1 | 1.942553e-01 | 1.942554e-01 | 0.9273 | 1.942553e-01 | 1.942554e-01 | 11.9908 | — | |
150 | 0.1 | 2.121414e-02 | 2.121419e-02 | 1.9469 | 2.121414e-02 | 2.121419e-02 | 40.4315 | — | |
200 | 0.1 | 2.737760e-01 | 2.737764e-01 | 4.8436 | — | ||||
250 | 0.1 | 1.803547e-01 | 1803554e-01 | 7.3638 | — | ||||
300 | 0.1 | 3.003607e-01 | 3.003612e-01 | 14.2789 | — | ||||
350 | 0.1 | 2.941177e-01 | 2.941187e-01 | 20.2413 | — | ||||
100 | 0.01 | 1.462551e-02 | 1.462558e-02 | 0.6089 | 1.462558e-02 | 1.462558e-02 | 11.6858 | — | |
150 | 0.01 | 1.371044e-01 | 1.371049e-01 | 1.4294 | 1.371044e-01 | 1.371049e-01 | 38.2468 | — | |
200 | 0.01 | 2.910353e-01 | 2.910355e-01 | 4.4201 | — | ||||
250 | 0.01 | 1.110103e-01 | 1.110109e-01 | 6.5731 | — | ||||
300 | 0.01 | 3.831475e-01 | 3.831484e-01 | 13.8774 | — | ||||
350 | 0.01 | 1.301978e-01 | 1.301985e-01 | 19.2763 | |||||
400 | 0.01 | 2.705236e-01 | 2.705243e-01 | 23.9422 | — |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue | time(s) |
50 | 1 | 1.073815e-01 | 1.073819e-01 | 0.2603 | 1.073815e-01 | 1.073819e-01 | 5.6108 | 1.331134e-01 | 0.0097 |
100 | 1 | 8.052910e-02 | 8.052916e-02 | 1.0407 | 8.052910e-02 | 8.052916e-02 | 23.5367 | 8.699541e-02 | 0.0117 |
150 | 1 | 3.159523e-01 | 3.159529e-01 | 2.6979 | 3.159523e-01 | 3.159529e-01 | 57.1506 | 3.692334e-02 | 0.0131 |
200 | 1 | 9.654340e-01 | 9.654352e-01 | 5.7237 | 9.654340e-01 | 9.654352e-01 | 120.0627 | 9.845699e-01 | 0.U192 |
250 | 1 | 5.314459e-01 | 5.314467e-01 | 7.9846 | 5.314459e-01 | 5.314467e-01 | 146.7938 | 5.983331e-01 | 0.0247 |
50 | 0.5 | 6.030734e-02 | 6.030738e-02 | 0.2465 | 6.030734e-02 | 6.030738e-02 | 5.2755 | 6.404861e-02 | 0.0114 |
100 | 0.5 | 7.375045e-02 | 7.375047e-02 | 0.9825 | 7.375045e-02 | 7.375047e-02 | 21.3846 | 7.915205e-02 | 0.0102 |
150 | 0.5 | 2.523155e-01 | 2.523164e-01 | 2.8862 | 2.523155e-01 | 2.523164e-01 | 50.9374 | 2.689658e-01 | 0.0133 |
2U0 | 0.5 | 1.997833e-01 | 1.997841e-01 | 5.3377 | 2.321445e-01 | 0.0158 | |||
250 | 0.5 | 4.256789e-01 | 4.256796e-01 | 7.7639 | 4.433670e-01 | 0.0239 | |||
300 | 0.5 | 6.730019e-01 | 6.730022e-01 | 12.2279 | 6.846389e-01 | 0.0268 | |||
50 | 0.25 | 1.119725e-01 | 1.119727e-01 | 0.2428 | 1.119725e-01 | 1.119727e-01 | 5.0119 | 1.289442e-01 | 0.0090 |
100 | 0.25 | 4.884773e-02 | 4.884778e-02 | 0.9657 | 4.884773e-02 | 4.884778e-02 | 14.003-1 | 5.102978e-01 | 0.0109 |
150 | 0.25 | 2.374415e-01 | 2.374418e-01 | 2.7611 | 2.374415e-01 | 2.374418e-01 | 47.1437 | 2.531947e-01 | 0.0124 |
200 | 0.25 | 3.264711e-02 | 3.264719e-02 | 5.1312 | 3.803010e-02 | 0.0144 | |||
250 | 0.25 | 5.412756e-01 | 5.412759e-01 | 7.3988 | 5.732258e-01 | 0.0216 | |||
300 | 0.25 | 1.222439e-01 | 1.222445e-01 | 12.0333 | 1.986063e-01 | 0.0253 | |||
50 | 0.1 | 1.833330e-01 | 1.833334e-01 | 0.2236 | 1.833330e-01 | 1.833334e-01 | 4.9949 | 1.970122e-01 | 0.0094 |
100 | 0.1 | 3.380843e-01 | 3.380847e-01 | 0.8375 | 3.380843e-01 | 3.380847e-01 | 17.1359 | 3.426797e-01 | 0.0112 |
150 | 0.1 | 3.348966e-01 | 3.348969e-01 | 2.4617 | 3.348966e-01 | 3.348969e-01 | 46.9201 | 3.532487e-01 | 0.0135 |
200 | 0.1 | 1.355464e-01 | 1.355466e-01 | 4.8699 | 1.836288e-01 | 0.0137 | |||
250 | 0.1 | 2.002679e-01 | 2.002685e-01 | 7.1009 | 2.321444e-01 | 0.0205 | |||
300 | 0.1 | 3.191755e-01 | 3.191761e-01 | 11.8233 | 3.274615e-01 | 0.0242 | |||
350 | 0.1 | 8.630814e-02 | 8.630823e-02 | 18.7753 | 8.949326e-01 | 0.0276 | |||
100 | 0.01 | 2.322450e-02 | 2.322456e-02 | 0.7865 | 2.322450e-02 | 2.322456e-02 | 16.7437 | 2.481309e-02 | 0.0104 |
150 | 0.01 | 5.444251e-02 | 5.444253e-02 | 2.1999 | 5.444251e-02 | 5.444253e-02 | 43.2585 | 5.613323e-02 | 0.0126 |
200 | 0.01 | 2.510731e-01 | 2.510735e-01 | 4.5176 | 2.713509e-01 | 0.0128 | |||
250 | 0.01 | 3.722411e-01 | 3.722423e-01 | 6.9452 | 3.830029e-01 | 0.0132 | |||
300 | 0.01 | 1.676625e-01 | 1.676632e-01 | 11.3290 | 1.821748e-01 | 0.0229 | |||
350 | 0.01 | 1.853554e-01 | 1.853560e-01 | 19.5423 | 1.962172e-01 | 0.0238 | |||
400 | 0.01 | 4.531146e-01 | 4.531156e-01 | 24.1313 | 4.972134e-01 | 0.0263 |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue | time(s) |
50 | 1 | 1.073815e-01 | 1.073819e-01 | 0.2603 | 1.073815e-01 | 1.073819e-01 | 5.6108 | 1.331134e-01 | 0.0097 |
100 | 1 | 8.052910e-02 | 8.052916e-02 | 1.0407 | 8.052910e-02 | 8.052916e-02 | 23.5367 | 8.699541e-02 | 0.0117 |
150 | 1 | 3.159523e-01 | 3.159529e-01 | 2.6979 | 3.159523e-01 | 3.159529e-01 | 57.1506 | 3.692334e-02 | 0.0131 |
200 | 1 | 9.654340e-01 | 9.654352e-01 | 5.7237 | 9.654340e-01 | 9.654352e-01 | 120.0627 | 9.845699e-01 | 0.U192 |
250 | 1 | 5.314459e-01 | 5.314467e-01 | 7.9846 | 5.314459e-01 | 5.314467e-01 | 146.7938 | 5.983331e-01 | 0.0247 |
50 | 0.5 | 6.030734e-02 | 6.030738e-02 | 0.2465 | 6.030734e-02 | 6.030738e-02 | 5.2755 | 6.404861e-02 | 0.0114 |
100 | 0.5 | 7.375045e-02 | 7.375047e-02 | 0.9825 | 7.375045e-02 | 7.375047e-02 | 21.3846 | 7.915205e-02 | 0.0102 |
150 | 0.5 | 2.523155e-01 | 2.523164e-01 | 2.8862 | 2.523155e-01 | 2.523164e-01 | 50.9374 | 2.689658e-01 | 0.0133 |
2U0 | 0.5 | 1.997833e-01 | 1.997841e-01 | 5.3377 | 2.321445e-01 | 0.0158 | |||
250 | 0.5 | 4.256789e-01 | 4.256796e-01 | 7.7639 | 4.433670e-01 | 0.0239 | |||
300 | 0.5 | 6.730019e-01 | 6.730022e-01 | 12.2279 | 6.846389e-01 | 0.0268 | |||
50 | 0.25 | 1.119725e-01 | 1.119727e-01 | 0.2428 | 1.119725e-01 | 1.119727e-01 | 5.0119 | 1.289442e-01 | 0.0090 |
100 | 0.25 | 4.884773e-02 | 4.884778e-02 | 0.9657 | 4.884773e-02 | 4.884778e-02 | 14.003-1 | 5.102978e-01 | 0.0109 |
150 | 0.25 | 2.374415e-01 | 2.374418e-01 | 2.7611 | 2.374415e-01 | 2.374418e-01 | 47.1437 | 2.531947e-01 | 0.0124 |
200 | 0.25 | 3.264711e-02 | 3.264719e-02 | 5.1312 | 3.803010e-02 | 0.0144 | |||
250 | 0.25 | 5.412756e-01 | 5.412759e-01 | 7.3988 | 5.732258e-01 | 0.0216 | |||
300 | 0.25 | 1.222439e-01 | 1.222445e-01 | 12.0333 | 1.986063e-01 | 0.0253 | |||
50 | 0.1 | 1.833330e-01 | 1.833334e-01 | 0.2236 | 1.833330e-01 | 1.833334e-01 | 4.9949 | 1.970122e-01 | 0.0094 |
100 | 0.1 | 3.380843e-01 | 3.380847e-01 | 0.8375 | 3.380843e-01 | 3.380847e-01 | 17.1359 | 3.426797e-01 | 0.0112 |
150 | 0.1 | 3.348966e-01 | 3.348969e-01 | 2.4617 | 3.348966e-01 | 3.348969e-01 | 46.9201 | 3.532487e-01 | 0.0135 |
200 | 0.1 | 1.355464e-01 | 1.355466e-01 | 4.8699 | 1.836288e-01 | 0.0137 | |||
250 | 0.1 | 2.002679e-01 | 2.002685e-01 | 7.1009 | 2.321444e-01 | 0.0205 | |||
300 | 0.1 | 3.191755e-01 | 3.191761e-01 | 11.8233 | 3.274615e-01 | 0.0242 | |||
350 | 0.1 | 8.630814e-02 | 8.630823e-02 | 18.7753 | 8.949326e-01 | 0.0276 | |||
100 | 0.01 | 2.322450e-02 | 2.322456e-02 | 0.7865 | 2.322450e-02 | 2.322456e-02 | 16.7437 | 2.481309e-02 | 0.0104 |
150 | 0.01 | 5.444251e-02 | 5.444253e-02 | 2.1999 | 5.444251e-02 | 5.444253e-02 | 43.2585 | 5.613323e-02 | 0.0126 |
200 | 0.01 | 2.510731e-01 | 2.510735e-01 | 4.5176 | 2.713509e-01 | 0.0128 | |||
250 | 0.01 | 3.722411e-01 | 3.722423e-01 | 6.9452 | 3.830029e-01 | 0.0132 | |||
300 | 0.01 | 1.676625e-01 | 1.676632e-01 | 11.3290 | 1.821748e-01 | 0.0229 | |||
350 | 0.01 | 1.853554e-01 | 1.853560e-01 | 19.5423 | 1.962172e-01 | 0.0238 | |||
400 | 0.01 | 4.531146e-01 | 4.531156e-01 | 24.1313 | 4.972134e-01 | 0.0263 |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue time(s) | |
50 | 1 | 1.579354e-01 | 1.579359e-01 | 0.2742 | 1.579354e-01 | 1.579359e-01 | 5.1885 | — | |
100 | 1 | 5.214084e-02 | 5.214087e-02 | 0.9871 | 5.214084e-02 | 5.214087e-02 | 23.9418 | — | |
150 | 1 | 2.951871e-02 | 2.951876e-02 | 2.5428 | 2.951871e-02 | 2.951876e-02 | 56.8249 | — | |
200 | 1 | 4.437936e-01 | 4.437943e-01 | 5.2411 | |||||
250 | 1 | 1.302289e-01 | 1.302295e-01 | 7.5028 | — | ||||
50 | 0.5 | 2.984366e-02 | 2.984369e-02 | 0.2527 | 2.984366e-02 | 2.984369e-02 | 5.0748 | — | |
100 | 0.5 | 2.547812e-02 | 2.547816e-02 | 0.7961 | 2.547812e-02 | 2.547816e-02 | 19.8679 | — | |
150 | 0.5 | 1.330274e-01 | 1.330278e-01 | 2.2318 | 1.330274e-01 | 1.330278e-01 | 55.3997 | — | |
200 | 0.5 | 4.219078e-01 | 4.219083e-01 | 5.2065 | — | ||||
250 | 0.5 | 2.903107e-01 | 2.903111e-01 | 7.1589 | |||||
300 | 0.5 | 3.600279e-02 | 3.600286e-01 | 13.2012 | — | ||||
50 | 0.25 | 1.742665e-02 | 1.742669e-02 | 0.2375 | 1.742665e-02 | 1.742669e-02 | 4.9128 | — | |
100 | 0.25 | 6.999637e-02 | 6.999639e-02 | 0.7539 | 6.999637e-02 | 6.999639e-02 | 19.2247 | — | |
150 | 0.25 | 2.181804e-02 | 2.181807e-02 | 2.1246 | 2.181804e-02 | 2.181807e-02 | 54.8697 | — | |
200 | 0.25 | 1.898546e-01 | 1.898552e-01 | 4.9963 | - - | ||||
250 | 0.25 | 4.199379e-01 | 4.199380e-01 | 6.8883 | — | ||||
300 | 0.25 | 2.342168e-01 | 2.342173e-01 | 12.9771 | — | ||||
50 | 0.1 | 2.254114e-02 | 2.254117e-02 | 0.2162 | 2.254114e-02 | 2.254117e-02 | 4.3246 | — | |
100 | 0.1 | 1.947362e-02 | 1.947365e-02 | 0.6987 | 1.947362e-02 | 1.947365e-02 | 18.9781 | — | |
150 | 0.1 | 1.596201e-01 | 1.596206e-01 | 1.9342 | 1.596201e-01 | 1.596206e-01 | 52.7639 | — | |
200 | 0.1 | 2.603211e-01 | 2.603213e-01 | 4.5136 | — | ||||
250 | 0.1 | 2.274938e-01 | 2.274946e-01 | 6.2734 | — | ||||
300 | 0.1 | 1.757963e-01 | 1.757970e-01 | 12.4938 | — | ||||
100 | 0.01 | 1.977456e-02 | 1.977458e-02 | 0.7276 | 1.977456e-02 | 1.977458e-02 | 4.1807 | — | |
150 | 0.01 | 6.123555e-02 | 6.123557e-02 | 1.5383 | 6.123555e-02 | 6.123557e-02 | 50.9088 | — | |
200 | 0.01 | 9.402653e-02 | 9.402659e-02 | 4.2944 | — | ||||
250 | 0.01 | 2.351025e-01 | 2.351028e-01 | 5.8472 | — | ||||
300 | 0.01 | 1.639947e-01 | 1.639959e-01 | 11.8967 | — | ||||
350 | 0.01 | 2.486289e-01 | 2.486296e-01 | 20.1709 | — | ||||
400 | 0.01 | 2.519726e-01 | 2.519735e-01 | 25.0546 | — |
SDO Method | Bisection Method | fmincon | |||||||
n | density | λ* | fvalue | time(s) | λ* | fvalue | time(s) | fvalue time(s) | |
50 | 1 | 1.579354e-01 | 1.579359e-01 | 0.2742 | 1.579354e-01 | 1.579359e-01 | 5.1885 | — | |
100 | 1 | 5.214084e-02 | 5.214087e-02 | 0.9871 | 5.214084e-02 | 5.214087e-02 | 23.9418 | — | |
150 | 1 | 2.951871e-02 | 2.951876e-02 | 2.5428 | 2.951871e-02 | 2.951876e-02 | 56.8249 | — | |
200 | 1 | 4.437936e-01 | 4.437943e-01 | 5.2411 | |||||
250 | 1 | 1.302289e-01 | 1.302295e-01 | 7.5028 | — | ||||
50 | 0.5 | 2.984366e-02 | 2.984369e-02 | 0.2527 | 2.984366e-02 | 2.984369e-02 | 5.0748 | — | |
100 | 0.5 | 2.547812e-02 | 2.547816e-02 | 0.7961 | 2.547812e-02 | 2.547816e-02 | 19.8679 | — | |
150 | 0.5 | 1.330274e-01 | 1.330278e-01 | 2.2318 | 1.330274e-01 | 1.330278e-01 | 55.3997 | — | |
200 | 0.5 | 4.219078e-01 | 4.219083e-01 | 5.2065 | — | ||||
250 | 0.5 | 2.903107e-01 | 2.903111e-01 | 7.1589 | |||||
300 | 0.5 | 3.600279e-02 | 3.600286e-01 | 13.2012 | — | ||||
50 | 0.25 | 1.742665e-02 | 1.742669e-02 | 0.2375 | 1.742665e-02 | 1.742669e-02 | 4.9128 | — | |
100 | 0.25 | 6.999637e-02 | 6.999639e-02 | 0.7539 | 6.999637e-02 | 6.999639e-02 | 19.2247 | — | |
150 | 0.25 | 2.181804e-02 | 2.181807e-02 | 2.1246 | 2.181804e-02 | 2.181807e-02 | 54.8697 | — | |
200 | 0.25 | 1.898546e-01 | 1.898552e-01 | 4.9963 | - - | ||||
250 | 0.25 | 4.199379e-01 | 4.199380e-01 | 6.8883 | — | ||||
300 | 0.25 | 2.342168e-01 | 2.342173e-01 | 12.9771 | — | ||||
50 | 0.1 | 2.254114e-02 | 2.254117e-02 | 0.2162 | 2.254114e-02 | 2.254117e-02 | 4.3246 | — | |
100 | 0.1 | 1.947362e-02 | 1.947365e-02 | 0.6987 | 1.947362e-02 | 1.947365e-02 | 18.9781 | — | |
150 | 0.1 | 1.596201e-01 | 1.596206e-01 | 1.9342 | 1.596201e-01 | 1.596206e-01 | 52.7639 | — | |
200 | 0.1 | 2.603211e-01 | 2.603213e-01 | 4.5136 | — | ||||
250 | 0.1 | 2.274938e-01 | 2.274946e-01 | 6.2734 | — | ||||
300 | 0.1 | 1.757963e-01 | 1.757970e-01 | 12.4938 | — | ||||
100 | 0.01 | 1.977456e-02 | 1.977458e-02 | 0.7276 | 1.977456e-02 | 1.977458e-02 | 4.1807 | — | |
150 | 0.01 | 6.123555e-02 | 6.123557e-02 | 1.5383 | 6.123555e-02 | 6.123557e-02 | 50.9088 | — | |
200 | 0.01 | 9.402653e-02 | 9.402659e-02 | 4.2944 | — | ||||
250 | 0.01 | 2.351025e-01 | 2.351028e-01 | 5.8472 | — | ||||
300 | 0.01 | 1.639947e-01 | 1.639959e-01 | 11.8967 | — | ||||
350 | 0.01 | 2.486289e-01 | 2.486296e-01 | 20.1709 | — | ||||
400 | 0.01 | 2.519726e-01 | 2.519735e-01 | 25.0546 | — |
[1] |
Yong Xia, Yu-Jun Gong, Sheng-Nan Han. A new semidefinite relaxation for $L_{1}$-constrained quadratic optimization and extensions. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 185-195. doi: 10.3934/naco.2015.5.185 |
[2] |
Lin Zhu, Xinzhen Zhang. Semidefinite relaxation method for polynomial optimization with second-order cone complementarity constraints. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1505-1517. doi: 10.3934/jimo.2021030 |
[3] |
Jie Sun. On methods for solving nonlinear semidefinite optimization problems. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 1-14. doi: 10.3934/naco.2011.1.1 |
[4] |
Jinling Zhao, Wei Chen, Su Zhang. Immediate schedule adjustment and semidefinite relaxation. Journal of Industrial and Management Optimization, 2019, 15 (2) : 633-645. doi: 10.3934/jimo.2018062 |
[5] |
Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015 |
[6] |
Chenchen Wu, Dachuan Xu, Xin-Yuan Zhao. An improved approximation algorithm for the $2$-catalog segmentation problem using semidefinite programming relaxation. Journal of Industrial and Management Optimization, 2012, 8 (1) : 117-126. doi: 10.3934/jimo.2012.8.117 |
[7] |
Anwa Zhou, Jinyan Fan. A semidefinite relaxation algorithm for checking completely positive separable matrices. Journal of Industrial and Management Optimization, 2019, 15 (2) : 893-908. doi: 10.3934/jimo.2018076 |
[8] |
Guoqiang Wang, Zhongchen Wu, Zhongtuan Zheng, Xinzhong Cai. Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 101-113. doi: 10.3934/naco.2015.5.101 |
[9] |
Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial and Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135 |
[10] |
Yang Li, Yonghong Ren, Yun Wang, Jian Gu. Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved. Journal of Industrial and Management Optimization, 2015, 11 (1) : 65-81. doi: 10.3934/jimo.2015.11.65 |
[11] |
Yang Li, Liwei Zhang. A nonlinear Lagrangian method based on Log-Sigmoid function for nonconvex semidefinite programming. Journal of Industrial and Management Optimization, 2009, 5 (3) : 651-669. doi: 10.3934/jimo.2009.5.651 |
[12] |
Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015 |
[13] |
Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial and Management Optimization, 2010, 6 (4) : 881-893. doi: 10.3934/jimo.2010.6.881 |
[14] |
Daniel Morales-Silva, David Yang Gao. Complete solutions and triality theory to a nonconvex optimization problem with double-well potential in $\mathbb{R}^n $. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 271-282. doi: 10.3934/naco.2013.3.271 |
[15] |
Zhong Wan, Chaoming Hu, Zhanlu Yang. A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1157-1169. doi: 10.3934/dcdsb.2011.16.1157 |
[16] |
Chunrong Chen, T. C. Edwin Cheng, Shengji Li, Xiaoqi Yang. Nonlinear augmented Lagrangian for nonconvex multiobjective optimization. Journal of Industrial and Management Optimization, 2011, 7 (1) : 157-174. doi: 10.3934/jimo.2011.7.157 |
[17] |
Rentsen Enkhbat, M. V. Barkova, A. S. Strekalovsky. Solving Malfatti's high dimensional problem by global optimization. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 153-160. doi: 10.3934/naco.2016005 |
[18] |
Chengjin Li. Parameter-related projection-based iterative algorithm for a kind of generalized positive semidefinite least squares problem. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 511-520. doi: 10.3934/naco.2020048 |
[19] |
Saeid Ansary Karbasy, Maziar Salahi. Quadratic optimization with two ball constraints. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 165-175. doi: 10.3934/naco.2019046 |
[20] |
Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial and Management Optimization, 2016, 12 (1) : 269-283. doi: 10.3934/jimo.2016.12.269 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]