September  2020, 10(3): 367-379. doi: 10.3934/naco.2020008

Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay

Beijing Key Laboratory of Fieldbus Technology and Automation, North China University of Technology, Beijing 100144, China

* Corresponding author: Lei Liu, liulei_sophia@163.com

Received  May 2019 Revised  September 2019 Published  February 2020

Fund Project: The first author is supported by Youth Foundation of Beijing Nature Science Grant (No.4154068), the Youth Talent Cultivation Program of Beijing, the National Natural Science Foundation of China (No.61473002, No.61573024), North China University of Technology Yuyou Talent Support Program and the Fundamental Research Funds for Beijing Universities (No.110052971921/030)

This paper presents a observer-based fault estimation method for a class of singularly perturbed systems subjected to parameter uncertainties and time-delay in state and disturbance signal with finite energy. To solve the estimation problem involving actuator fault and sensor fault for the uncertain disturbed singularly perturbed systems with time-delay, the problem we studied is firstly transformed into a standard $ H_\infty $ control problem, in which the performance index $ \gamma $ represents the attenuation of finite energy disturbance. By adopting Lyapunov function with the $ \varepsilon $-dependence, a sufficient condition can be derived which enables the designed observer to estimate different kinds of fault signals stably and accurately, and the result obtained by dealing with small perturbation parameter in this way is less conservative. A novel multi-objective optimization scheme is then proposed to optimal disturbance attenuation index $ \gamma $ and system stable upper bound $ \varepsilon^* $, in this case, the designed observer can estimate the fault signals better in the presence of interference when the systems guarantee maximum stability bound. In the end, the validity and correctness of proposed scheme is verified by comparing the error between the estimated faults and the actual faults.

Citation: Lei Liu, Shaoying Lu, Cunwu Han, Chao Li, Zejin Feng. Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 367-379. doi: 10.3934/naco.2020008
References:
[1]

Z. Bougatef, N. Abdelkrim, A. Tellili, et al., Fault diagnosis and accommodation for singularly perturbed time-delayed systems: descriptor approach, in 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, (2017), 86–92.

[2]

G. R. Duan, H. H. Yu, A. G. Wu, et al., Analysis and Design of Descriptor Linear Systems, 1st edition, Beijing: Science Press, 2012. doi: 10.1007/978-1-4419-6397-0.

[3]

S. H. Jiang, Stability analysis of time-varying time-delay uncertain singular systems, Journal of Tonghua Normal University, 38 (2017), 30-32. 

[4]

H. Y. Li, Y. Y. Wang, D. Y. Yao, et al., A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems, Automatica, 97 (2018), 404-413. doi: 10.1016/j.automatica.2018.03.066.

[5]

D. LiuY. Yang and Y. Zhang, Robust fault estimation for singularly perturbed systems with Lipschitz nonlinearity, Journal of The Franklin Institute, 353 (2016), 876-890.  doi: 10.1016/j.jfranklin.2016.01.009.

[6]

H. S. Liu and Y. Huang, Robust adaptive output feedback tracking control for flexible-joint robot manipulators based on singularly perturbed decoupling, Robotica, 36 (2018), 822-838. 

[7]

L. LiuY. Yang and W. Liu, Unified optimization of $H_\infty$ index and upper stability bound for singularly perturbed systems, Optimization Letters, 8 (2014), 1889-1904.  doi: 10.1007/s11590-013-0686-6.

[8]

L. Liu, S. Y. Lu, C. W. Han, et al., Robust $H_\infty$ control for uncertain singularly perturbed systems with time-delay, in China Control Conference, (2017), 3147–3152.

[9]

L. Liu , X. F. Yan, C. W. Han, et al., Fault diagnosis and optimal fault-tolerant control of singularly perturbed systems based on PI observer, Control and Decision, 31 (2016), 1867-1872.

[10]

W. Q. Liu, M. Paskota, V. Sreeram, et al., Improvement on stability bounds for singularly perturbed systems via state feedback, International Journal of Systems Science, 28 (1997), 571-578.

[11]

P. Mei and Y. Zou, Study on robust stability of uncertain singular perturbation systems with time delay, Control and Decision, 23 (2008), 392-396. 

[12]

M. NdiayeW. Liu and Z. M. Wang, Robust ISS stabilization on disturbance for uncertain singularly perturbed systems, IMA Journal of Mathematical Control and Information, 35 (2018), 1115-1127.  doi: 10.1093/imamci/dnx017.

[13]

H. Shen, F. Li, Z. Wu, J. H. Park, et al., Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters, IEEE Transactions on Fuzzy Systems, 26 (2018), 3428-3439.

[14]

H. Shen, Y. Men, Z. G. Wu, et al., Nonfragile $H_\infty$ control for fuzzy markovian jump systems under fast sampling singular perturbation, IEEE Transactions on Systems, Man and Cybernetics: Systems, (2017), 1–12.

[15]

H. Shen, Y. Men, Z. Wu, J. Cao, et al., Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application, IEEE Transactions on Circuits and Systems I: Regular Papers, 66 (2019), 1130-1140.

[16]

F. Q. Sun, Guaranteed performance control of a time-varying time-delay uncertain singular perturbation system, Journal of Jilin University, 6 (2015), 637-643. 

[17]

A. Tellili, M. N. Abdelkrim and M. Benrejeb, Model-based fault diagnosis of two-time scales singularly perturbed systems, in International Symposium on Control, (2004), 819–822.

[18]

A. Tellili and M. N. Abdelkrim, Fault diagnosis and reconfigurable control of singularly perturbed systems using GIMC structure, International Journal of Computer Applications, 44 (2012), 31-35. 

[19]

A. Tellili and M. N. Abdelkrim, Realiable $H_\infty$ controller design for singularly perturbed systems with sensor failure, in IEEE International Conference on Industrial Technology, (2004), 1636–1641.

[20]

A. TelliliM. N. Abdelkrim and M. Benrejeb, Reliable $H_\infty$ control of multiple time scales singularly perturbed systems with sensor failure, International Journal of Control, 80 (2007), 659-665.  doi: 10.1080/00207170601009634.

[21]

G. X. Wang, J. Wu, B. F. Zeng, et. al., A nonlinear adaptive sliding mode control strategy for modular high-temperature gas-cooled reactors, Progress in Nuclear Energy, 113 (2019), 53-61.

[22]

Y. Y. WangW. Liu and Z. M. Wang, Robust $H_\infty$ control of uncertain singular perturbation system with time delay, Journal of Beijing University of Technology, 42 (2016), 217-222. 

[23]

J. Xu, C. Cai and Y. Zou, A novel method for fault detection in singularly perturbed systems via the finite frequency strategy, Journal of The Franklin Institute, 352 (2015), 5061-5084. doi: 10.1016/j.jfranklin.2015.08.001.

[24]

J. Xu and Y. G. Niu, A finite frequency approach for fault detection of fuzzy singularly perturbed systems with regional pole assignment, Neurocomputing, 325 (2019), 200-201. 

[25]

J. XuY. G. NiuE. Fridman and et. al, Finite frequency $H_\infty$ control of singularly perturbed Euler-Lagrange systems: An artificial delay approach, Inernational Journal of Robust and Nonlinear Control, 29 (2019), 353-374.  doi: 10.1002/rnc.4383.

[26] K. K. Xu, Singular Perturbation in the Control Systems, Beijing: Science Press, 1986. 
[27]

C. Yang, L. Ma, X. Ma, et al., Stability analysis of singularly perturbed control systems with actuator saturation, Journal of The Franklin Institute, 353 (2016), 1284-1296. doi: 10.1016/j.jfranklin.2015.12.013.

[28]

C. Yang, Z. Che, J. Fu, et al., Passivity-based integral sliding mode control and " - bound estimation for uncertain singularly perturbed systems with disturbances, IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (2019), 452-456. doi: 10.1155/2015/926762.

[29]

C. YangZ. Che and L. Zhou, Integral sliding mode control for singularly perturbed systems with mismatched disturbances, Circuits, Systems, and Signal Processing, 38 (2019), 1561-1582.  doi: 10.1007/s00034-018-0925-2.

[30]

C. Yang and Q. Zhang, Multiobjective control for T-S fuzzy singularly perturbed systems, IEEE Transactions Fuzzy Systems, 17 (2009), 104-115. 

[31]

D. M. Yang, Q. L. Zhang, B. Yao, et al., Singular Systems, 1st edition, Beijing: Science Press, 2004.

[32]

M. R. Zhou, W. Z. Lin, M. K. Ni, et al., Introduction to Singular Perturbation, Beijing: Science Press, 2014.

show all references

References:
[1]

Z. Bougatef, N. Abdelkrim, A. Tellili, et al., Fault diagnosis and accommodation for singularly perturbed time-delayed systems: descriptor approach, in 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, (2017), 86–92.

[2]

G. R. Duan, H. H. Yu, A. G. Wu, et al., Analysis and Design of Descriptor Linear Systems, 1st edition, Beijing: Science Press, 2012. doi: 10.1007/978-1-4419-6397-0.

[3]

S. H. Jiang, Stability analysis of time-varying time-delay uncertain singular systems, Journal of Tonghua Normal University, 38 (2017), 30-32. 

[4]

H. Y. Li, Y. Y. Wang, D. Y. Yao, et al., A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems, Automatica, 97 (2018), 404-413. doi: 10.1016/j.automatica.2018.03.066.

[5]

D. LiuY. Yang and Y. Zhang, Robust fault estimation for singularly perturbed systems with Lipschitz nonlinearity, Journal of The Franklin Institute, 353 (2016), 876-890.  doi: 10.1016/j.jfranklin.2016.01.009.

[6]

H. S. Liu and Y. Huang, Robust adaptive output feedback tracking control for flexible-joint robot manipulators based on singularly perturbed decoupling, Robotica, 36 (2018), 822-838. 

[7]

L. LiuY. Yang and W. Liu, Unified optimization of $H_\infty$ index and upper stability bound for singularly perturbed systems, Optimization Letters, 8 (2014), 1889-1904.  doi: 10.1007/s11590-013-0686-6.

[8]

L. Liu, S. Y. Lu, C. W. Han, et al., Robust $H_\infty$ control for uncertain singularly perturbed systems with time-delay, in China Control Conference, (2017), 3147–3152.

[9]

L. Liu , X. F. Yan, C. W. Han, et al., Fault diagnosis and optimal fault-tolerant control of singularly perturbed systems based on PI observer, Control and Decision, 31 (2016), 1867-1872.

[10]

W. Q. Liu, M. Paskota, V. Sreeram, et al., Improvement on stability bounds for singularly perturbed systems via state feedback, International Journal of Systems Science, 28 (1997), 571-578.

[11]

P. Mei and Y. Zou, Study on robust stability of uncertain singular perturbation systems with time delay, Control and Decision, 23 (2008), 392-396. 

[12]

M. NdiayeW. Liu and Z. M. Wang, Robust ISS stabilization on disturbance for uncertain singularly perturbed systems, IMA Journal of Mathematical Control and Information, 35 (2018), 1115-1127.  doi: 10.1093/imamci/dnx017.

[13]

H. Shen, F. Li, Z. Wu, J. H. Park, et al., Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters, IEEE Transactions on Fuzzy Systems, 26 (2018), 3428-3439.

[14]

H. Shen, Y. Men, Z. G. Wu, et al., Nonfragile $H_\infty$ control for fuzzy markovian jump systems under fast sampling singular perturbation, IEEE Transactions on Systems, Man and Cybernetics: Systems, (2017), 1–12.

[15]

H. Shen, Y. Men, Z. Wu, J. Cao, et al., Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application, IEEE Transactions on Circuits and Systems I: Regular Papers, 66 (2019), 1130-1140.

[16]

F. Q. Sun, Guaranteed performance control of a time-varying time-delay uncertain singular perturbation system, Journal of Jilin University, 6 (2015), 637-643. 

[17]

A. Tellili, M. N. Abdelkrim and M. Benrejeb, Model-based fault diagnosis of two-time scales singularly perturbed systems, in International Symposium on Control, (2004), 819–822.

[18]

A. Tellili and M. N. Abdelkrim, Fault diagnosis and reconfigurable control of singularly perturbed systems using GIMC structure, International Journal of Computer Applications, 44 (2012), 31-35. 

[19]

A. Tellili and M. N. Abdelkrim, Realiable $H_\infty$ controller design for singularly perturbed systems with sensor failure, in IEEE International Conference on Industrial Technology, (2004), 1636–1641.

[20]

A. TelliliM. N. Abdelkrim and M. Benrejeb, Reliable $H_\infty$ control of multiple time scales singularly perturbed systems with sensor failure, International Journal of Control, 80 (2007), 659-665.  doi: 10.1080/00207170601009634.

[21]

G. X. Wang, J. Wu, B. F. Zeng, et. al., A nonlinear adaptive sliding mode control strategy for modular high-temperature gas-cooled reactors, Progress in Nuclear Energy, 113 (2019), 53-61.

[22]

Y. Y. WangW. Liu and Z. M. Wang, Robust $H_\infty$ control of uncertain singular perturbation system with time delay, Journal of Beijing University of Technology, 42 (2016), 217-222. 

[23]

J. Xu, C. Cai and Y. Zou, A novel method for fault detection in singularly perturbed systems via the finite frequency strategy, Journal of The Franklin Institute, 352 (2015), 5061-5084. doi: 10.1016/j.jfranklin.2015.08.001.

[24]

J. Xu and Y. G. Niu, A finite frequency approach for fault detection of fuzzy singularly perturbed systems with regional pole assignment, Neurocomputing, 325 (2019), 200-201. 

[25]

J. XuY. G. NiuE. Fridman and et. al, Finite frequency $H_\infty$ control of singularly perturbed Euler-Lagrange systems: An artificial delay approach, Inernational Journal of Robust and Nonlinear Control, 29 (2019), 353-374.  doi: 10.1002/rnc.4383.

[26] K. K. Xu, Singular Perturbation in the Control Systems, Beijing: Science Press, 1986. 
[27]

C. Yang, L. Ma, X. Ma, et al., Stability analysis of singularly perturbed control systems with actuator saturation, Journal of The Franklin Institute, 353 (2016), 1284-1296. doi: 10.1016/j.jfranklin.2015.12.013.

[28]

C. Yang, Z. Che, J. Fu, et al., Passivity-based integral sliding mode control and " - bound estimation for uncertain singularly perturbed systems with disturbances, IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (2019), 452-456. doi: 10.1155/2015/926762.

[29]

C. YangZ. Che and L. Zhou, Integral sliding mode control for singularly perturbed systems with mismatched disturbances, Circuits, Systems, and Signal Processing, 38 (2019), 1561-1582.  doi: 10.1007/s00034-018-0925-2.

[30]

C. Yang and Q. Zhang, Multiobjective control for T-S fuzzy singularly perturbed systems, IEEE Transactions Fuzzy Systems, 17 (2009), 104-115. 

[31]

D. M. Yang, Q. L. Zhang, B. Yao, et al., Singular Systems, 1st edition, Beijing: Science Press, 2004.

[32]

M. R. Zhou, W. Z. Lin, M. K. Ni, et al., Introduction to Singular Perturbation, Beijing: Science Press, 2014.

Figure 1.  Curves of estimated actuator fault
Figure 2.  Curves of estimated actuator fault
Figure 3.  Curves of the actuator fault estimation error
Figure 4.  Curves of the actuator fault estimation error
Figure 5.  Curves of estimated sensor fault
Figure 6.  Curves of estimated sensor fault
Figure 7.  Curves of the sensor fault estimation error
Figure 8.  Curves of the sensor fault estimation error
Figure 9.  Estimation error curves of fault state vector
Figure 10.  Estimation error curves of original system state vector
[1]

Junlin Xiong, Wenjie Liu. $ H_{\infty} $ observer-based control for large-scale systems with sparse observer communication network. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 331-343. doi: 10.3934/naco.2020005

[2]

Liqiang Jin, Yanyan Yin, Kok Lay Teo, Fei Liu. Event-triggered mixed $ H_\infty $ and passive control for Markov jump systems with bounded inputs. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1343-1355. doi: 10.3934/jimo.2020024

[3]

Ramalingam Sakthivel, Palanisamy Selvaraj, Yeong-Jae Kim, Dong-Hoon Lee, Oh-Min Kwon, Rathinasamy Sakthivel. Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022028

[4]

Zhaoxia Duan, Jinling Liang, Zhengrong Xiang. $ H_{\infty} $ control for continuous-discrete systems in T-S fuzzy model with finite frequency specifications. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022064

[5]

Canghua Jiang, Dongming Zhang, Chi Yuan, Kok Ley Teo. An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 135-157. doi: 10.3934/naco.2021056

[6]

Xingyue Liang, Jianwei Xia, Guoliang Chen, Huasheng Zhang, Zhen Wang. $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1329-1343. doi: 10.3934/dcdss.2020368

[7]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial and Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[8]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[9]

M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 365-384. doi: 10.3934/dcdsb.2005.5.365

[10]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 197-212. doi: 10.3934/dcdss.2021036

[11]

Burak Ordin, Adil Bagirov, Ehsan Mohebi. An incremental nonsmooth optimization algorithm for clustering using $ L_1 $ and $ L_\infty $ norms. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2757-2779. doi: 10.3934/jimo.2019079

[12]

Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial and Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035

[13]

Hongru Ren, Shubo Li, Changxin Lu. Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1395-1414. doi: 10.3934/dcdss.2020379

[14]

Rong Zhang. Nonexistence of Positive Solutions for high-order Hardy-H$ \acute{e} $non Systems on $ \mathbb{R}^{n} $. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022078

[15]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[16]

Li-Min Wang, Jing-Xian Yu, Jia Shi, Fu-Rong Gao. Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 11-23. doi: 10.3934/naco.2015.5.11

[17]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[18]

Raina Raj, Vidyottama Jain. Optimization of traffic control in $ MMAP\mathit{[2]}/PH\mathit{[2]}/S$ priority queueing model with $ PH $ retrial times and the preemptive repeat policy. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022044

[19]

Min Zhao, Changzheng Qu. The two-component Novikov-type systems with peaked solutions and $ H^1 $-conservation law. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2857-2883. doi: 10.3934/cpaa.2020245

[20]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

 Impact Factor: 

Metrics

  • PDF downloads (266)
  • HTML views (511)
  • Cited by (0)

Other articles
by authors

[Back to Top]