
-
Previous Article
Decoupling of cubic polynomial matrix systems
- NACO Home
- This Issue
- Next Article
Fault-tolerant control against actuator failures for uncertain singular fractional order systems
School of Sciences, Northeastern University, Shenyang 110819, China |
A method of designing observer-based feedback controller against actuator failures for uncertain singular fractional order systems (SFOS) is presented in this paper. By establishing actuator fault model and state observer, an observer-based fault-tolerant state feedback controller is developed such that the closed-loop SFOS is admissible. The controller designed by the proposed method guarantees that the closed-loop system is regular, impulse-free and stable in the event of actuator failures. Finally, a numerical example is given to illustrate the effectiveness of the proposed design method.
References:
[1] |
H. S. Ahn and Y. Q. Chen,
Necessary and sufficient stability condition of fractional$-$order interval linear systems, Automatica, 44 (2008), 2985-2988.
doi: 10.1016/j.automatica.2008.07.003. |
[2] |
M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosisi and Fault-Tolerant Control, Springer, Berlin, Germany, 2006.
doi: 10.1007/978-3-540-35653-0. |
[3] |
M. Blanke, R. Izadi-Zamanabadi, S. A. Bogh and C. P. Lunau,
Fault-tolerant control systems$-$a holistic view, Contol Engineering Prac., 5 (1997), 693-702.
doi: 10.1016/s0967-0661(97)00051-8. |
[4] |
L. L. Fan and Y. D. Song,
Neuro$-$adaptive model$-$referance fault$-$tolerant control with application to wind turbines, IET Control Theory & Appl., 6 (2012), 475-486.
doi: 10.1049/iet-cta.2011.0250. |
[5] |
C. Farges, M. Moze and J. Sabatier,
Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica, 46 (2010), 1730-1734.
doi: 10.1016/j.automatica.2010.06.038. |
[6] |
C. Farges, J. Sabatier and M. Moze, Robust stability analysis and stabilization of fractional order polytopic systems , Preprints of the 18th IFAC World Congress, (2011), Milano, Italy, 10800-10805.
doi: 10.3182/20110828-6-IT-1002.00779. |
[7] |
Bin Guo and Yong Chen,
Adaptive fault tolerant control for time-varying delay system withactuator fault and mismatched disturbance, ISA Transcation, 89 (2019), 122-130.
doi: 10.1016/j.isatra.2018.12.024. |
[8] |
Q. Hu, B. Xiao and M. I. Friswll,
Robust fault$-$tolerant control for spacecraft attitude stabilisation subject to input saturation, IET Control Theory & Appl., 5 (2011), 271-282.
doi: 10.1049/iet-cta.2009.0628. |
[9] |
S. D. Huang, J. Lam, G. H. Yang and S. Y. Zhang,
Fault tolerant decentralized $H_\infty$ control for symmetric composite systems, IEEE Trans. Autom. Control, 44 (1999), 2108-2114.
doi: 10.1109/9.802926. |
[10] |
R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin, Germany, 2006.
doi: 10.1007/3-540-30368-5. |
[11] |
L. A. Jacyntho, M. C. M. Teixeira and E. Assunco,
Identification of fractional-order transfer functions using a step excitation, IEEE Trans. Circuits Syst., 62 (2015), 896-900.
doi: 10.1109/tcsii.2015.2436052. |
[12] |
Y. Jiang, Q. L. Hu and G. F. Ma,
Adaptive backsteping fault$-$tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures, ISA Transcations, 49 (2010), 57-69.
doi: 10.1016/j.isatra.2009.08.003. |
[13] |
E. Last,
Linear matrix inequalities in system and control theory, Proceedings of the IEEE, 86 (1994), 2473-2474.
doi: 10.1109/JPROC.1998.735454. |
[14] |
X. J. Li and G. H. Yang,
Robust adaptive fault$-$tolerant control for uncertain linear systems with actuator failures, IET Control Theory & Appl., 6 (2012), 1544-1551.
doi: 10.1049/iet-cta.2011.0599. |
[15] |
Y. Li, Y. Q. Chen and I. Podlubny,
Stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965-1969.
doi: 10.1016/j.automatica.2009.04.003. |
[16] |
C. Lin, B. Chen, P. Shi and J. P. Yu,
Necessary and sufficient conditions of observer$-$based stabilization for a class of fractional$-$order descriptor systems, Systems & Control Letters, 112 (2018), 31-35.
doi: 10.1016/j.sysconle.2017.12.004. |
[17] |
J. G. Lu and G. R. Chen,
Robust stability and stabilization of fractional order interval systems: An LMI approach, IEEE Transactions on Automatic Control, 54 (2009), 1294-1299.
doi: 10.1109/tac.2009.2013056. |
[18] |
J. G. Lu and Y. Q. Chen,
Robust stability and stabilization of fractional order interval systems with the fractional order $\alpha$ : The $0 <\alpha<1$ case, IEEE Transactions on Automatic Control, 55 (2010), 152-158.
doi: 10.1109/TAC.2009.2033738. |
[19] |
H. J. Ma and G. H. Yang,
Detection and adaptive accommodation for actuator faults of a class of non$-$linear systems, IET Control Theory & Appl., 6 (2012), 2292-2307.
doi: 10.1049/iet-cta.2011.0265. |
[20] |
S. Marir, M. Chadli and D. Bouagada,
New admissibility conditions for singular linear continuous$-$time fractional$-$order systems, Jouranl of the Franklin Institute, 354 (2017), 752-766.
doi: 10.1016/j.jfranklin.2016.10.022. |
[21] |
S. Marir, M. Chadli and D. Bouagada,
A novel approach of admissibility for singular linear continuous$-$time fractional$-$order systems, International Journal of Control, Automation and Systems, 15 (2017), 959-964.
doi: 10.1007/s12555-016-0003-0. |
[22] |
D. Matignon, Stability results for fractional differential equations with applications to control processing , Proc. Computational Engineering in Systems and Applications Multiconferences (IMACS), (1996), 963–868. Google Scholar |
[23] |
C. Peng, T. C. Yang and E. G. Tian,
Robust fault-tolerant control of networked control systems with stochastic actuator failure, IET Control Theory & Appl., 4 (2012), 3003-3011.
doi: 10.1049/iet-cta.2009.0427. |
[24] |
I. Podlubny,
Fractional$-$order systems and $PI^\lambda D^\mu-$controllers, IEEE Transactions on Automat. Control, 44 (1999), 208-214.
doi: 10.1109/9.739144. |
[25] |
I. Podlubny, Fractional Differertial Equations, Academic Press, New York, 1999.
doi: 10.1007/978-3-642-39765-33.![]() |
[26] |
H. Shen, X. N. Song and Z. Wang,
Robust fault-tolerant control of uncertain fractional-order systems against actuator faults, IET Control Theory & Appl., 7 (2013), 1233-1241.
doi: 10.1049/iet-cta.2012.0822. |
[27] |
J. Shen and J. D. Cao,
Necessary and sufficient conditions for consensus of delayed fractional$-$order systems, Asian J. Control, 14 (2012), 1690-1697.
doi: 10.1002/asjc.492. |
[28] |
X. N. Song, Y. Q. Chen and H. Shen, LMI fault tolerant control for interval fractional-order systems with sensor failures , Proc. Fourth IFAC Workshop Fractional Differentiation and its Applications, (2010), Article no. FDA10-126, Badajoz, Spain. Google Scholar |
[29] |
X. N. Song and H. Shen,
Fault tolerant control for interval fractional-order systems with sensor failures, Advances in Mathematical Physics, 2013 (2013), 1-11.
doi: 10.1155/2013/836743. |
[30] |
F. Tao and Q. Zhao,
Synthesis of active fault$-$tolerant control based on Markovian jump system models, IET Control Theory & Appl., 1 (2007), 1160-1168.
doi: 10.1049/iet-cta:20050492. |
[31] |
M. Tavakoli-Kakhki and M. S. Tavazoei,
Estimation of the order and parameters of a fractional order model from a noisy step response data, Journal of Dynamic Systems, Measurement Control, 136 (2014), 1-7.
doi: 10.1115/1.4026345. |
[32] |
E. Uezato and M. Ikeda, Strict LMI conditions for stability, robust stabilization, and $H_\infty$ control of descriptor systems , IEEE Conference on Decision & Contol. IEEE, (1994), 4092–4097.
doi: 10.1109/CDC.1999.828001. |
[33] |
Y. H. Wei, P. W. Tse, Y. Zhao and Y. Wang,
The output feedback control synthesis for a class of singular fractional order systems, ISA Transactions, 69 (2017), 1-9.
doi: 10.1016/j.isatra.2017.04.020. |
[34] |
Y. H. Wei, J. C. Wang, T. Y. Liu and Y. Wang,
Sufficient and necessary conditions for stabilizing singular fractional order systems with partially measurable state, Jouranl of the Franklin Institute, 356 (2019), 1975-1990.
doi: 10.1016/j.jfranklin.2019.01.022. |
[35] |
Z. G. Wu, P. Shi, H. Y. Su and J. Chu,
Reliable $H_\infty$ control for control for discrete$-$time fuzzy systems with infinite$-$distributed delay, IEEE Trans. on Fuzzy Syst., 20 (2012), 22-31.
doi: 10.1109/TFUZZ.2011.2162850. |
[36] |
L. H. Xie,
Output feedback $H_\infty$ control of systems with parameter uncertainty, International Journal of Control, 63 (1996), 741-750.
doi: 10.1080/00207179608921866. |
[37] |
S. Y. Xu and J. Lam, Robust Control and Filtering of Singular Systems, Springer, Berlin, 2006.
doi: 10.1080/00207721.2014.998751. |
[38] |
G. H. Yang, J. L. Wang and Y. C. Soh,
Reliable $H_\infty$ controller design for linear systems, Automatica, 37 (2001), 717-725.
doi: 10.1016/S0005-1098(01)00007-3. |
[39] |
H. Yang, V. Cocquempot and B. Jiang,
Robust fault tolerant tracking control with application to hybrid nonlinear systems, Control Theory & Appl., 3 (2009), 211-224.
doi: 10.1049/iet-cta:20080015. |
[40] |
T. Zhan and S. P. Ma,
The controller design for singular fractional-order systems with fractional order $0<\alpha<1$, The ANZIAM Journal, 60 (2018), 230-248.
doi: 10.1017/S1446181118000202. |
[41] |
X. F. Zhang and Y. Q. Chen, D$-$stability based LMI criteria of stability and stabilization for fractional order systems , ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2015-46692, (2015), 1–6. Google Scholar |
[42] |
X. F. Zhang and Y. Q. Chen,
Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order $\alpha$: The $0<\alpha<1$ case, ISA Transcations, 82 (2018), 42-50.
doi: 10.1016/j.isatra.2017.03.008. |
show all references
References:
[1] |
H. S. Ahn and Y. Q. Chen,
Necessary and sufficient stability condition of fractional$-$order interval linear systems, Automatica, 44 (2008), 2985-2988.
doi: 10.1016/j.automatica.2008.07.003. |
[2] |
M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosisi and Fault-Tolerant Control, Springer, Berlin, Germany, 2006.
doi: 10.1007/978-3-540-35653-0. |
[3] |
M. Blanke, R. Izadi-Zamanabadi, S. A. Bogh and C. P. Lunau,
Fault-tolerant control systems$-$a holistic view, Contol Engineering Prac., 5 (1997), 693-702.
doi: 10.1016/s0967-0661(97)00051-8. |
[4] |
L. L. Fan and Y. D. Song,
Neuro$-$adaptive model$-$referance fault$-$tolerant control with application to wind turbines, IET Control Theory & Appl., 6 (2012), 475-486.
doi: 10.1049/iet-cta.2011.0250. |
[5] |
C. Farges, M. Moze and J. Sabatier,
Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica, 46 (2010), 1730-1734.
doi: 10.1016/j.automatica.2010.06.038. |
[6] |
C. Farges, J. Sabatier and M. Moze, Robust stability analysis and stabilization of fractional order polytopic systems , Preprints of the 18th IFAC World Congress, (2011), Milano, Italy, 10800-10805.
doi: 10.3182/20110828-6-IT-1002.00779. |
[7] |
Bin Guo and Yong Chen,
Adaptive fault tolerant control for time-varying delay system withactuator fault and mismatched disturbance, ISA Transcation, 89 (2019), 122-130.
doi: 10.1016/j.isatra.2018.12.024. |
[8] |
Q. Hu, B. Xiao and M. I. Friswll,
Robust fault$-$tolerant control for spacecraft attitude stabilisation subject to input saturation, IET Control Theory & Appl., 5 (2011), 271-282.
doi: 10.1049/iet-cta.2009.0628. |
[9] |
S. D. Huang, J. Lam, G. H. Yang and S. Y. Zhang,
Fault tolerant decentralized $H_\infty$ control for symmetric composite systems, IEEE Trans. Autom. Control, 44 (1999), 2108-2114.
doi: 10.1109/9.802926. |
[10] |
R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin, Germany, 2006.
doi: 10.1007/3-540-30368-5. |
[11] |
L. A. Jacyntho, M. C. M. Teixeira and E. Assunco,
Identification of fractional-order transfer functions using a step excitation, IEEE Trans. Circuits Syst., 62 (2015), 896-900.
doi: 10.1109/tcsii.2015.2436052. |
[12] |
Y. Jiang, Q. L. Hu and G. F. Ma,
Adaptive backsteping fault$-$tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures, ISA Transcations, 49 (2010), 57-69.
doi: 10.1016/j.isatra.2009.08.003. |
[13] |
E. Last,
Linear matrix inequalities in system and control theory, Proceedings of the IEEE, 86 (1994), 2473-2474.
doi: 10.1109/JPROC.1998.735454. |
[14] |
X. J. Li and G. H. Yang,
Robust adaptive fault$-$tolerant control for uncertain linear systems with actuator failures, IET Control Theory & Appl., 6 (2012), 1544-1551.
doi: 10.1049/iet-cta.2011.0599. |
[15] |
Y. Li, Y. Q. Chen and I. Podlubny,
Stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965-1969.
doi: 10.1016/j.automatica.2009.04.003. |
[16] |
C. Lin, B. Chen, P. Shi and J. P. Yu,
Necessary and sufficient conditions of observer$-$based stabilization for a class of fractional$-$order descriptor systems, Systems & Control Letters, 112 (2018), 31-35.
doi: 10.1016/j.sysconle.2017.12.004. |
[17] |
J. G. Lu and G. R. Chen,
Robust stability and stabilization of fractional order interval systems: An LMI approach, IEEE Transactions on Automatic Control, 54 (2009), 1294-1299.
doi: 10.1109/tac.2009.2013056. |
[18] |
J. G. Lu and Y. Q. Chen,
Robust stability and stabilization of fractional order interval systems with the fractional order $\alpha$ : The $0 <\alpha<1$ case, IEEE Transactions on Automatic Control, 55 (2010), 152-158.
doi: 10.1109/TAC.2009.2033738. |
[19] |
H. J. Ma and G. H. Yang,
Detection and adaptive accommodation for actuator faults of a class of non$-$linear systems, IET Control Theory & Appl., 6 (2012), 2292-2307.
doi: 10.1049/iet-cta.2011.0265. |
[20] |
S. Marir, M. Chadli and D. Bouagada,
New admissibility conditions for singular linear continuous$-$time fractional$-$order systems, Jouranl of the Franklin Institute, 354 (2017), 752-766.
doi: 10.1016/j.jfranklin.2016.10.022. |
[21] |
S. Marir, M. Chadli and D. Bouagada,
A novel approach of admissibility for singular linear continuous$-$time fractional$-$order systems, International Journal of Control, Automation and Systems, 15 (2017), 959-964.
doi: 10.1007/s12555-016-0003-0. |
[22] |
D. Matignon, Stability results for fractional differential equations with applications to control processing , Proc. Computational Engineering in Systems and Applications Multiconferences (IMACS), (1996), 963–868. Google Scholar |
[23] |
C. Peng, T. C. Yang and E. G. Tian,
Robust fault-tolerant control of networked control systems with stochastic actuator failure, IET Control Theory & Appl., 4 (2012), 3003-3011.
doi: 10.1049/iet-cta.2009.0427. |
[24] |
I. Podlubny,
Fractional$-$order systems and $PI^\lambda D^\mu-$controllers, IEEE Transactions on Automat. Control, 44 (1999), 208-214.
doi: 10.1109/9.739144. |
[25] |
I. Podlubny, Fractional Differertial Equations, Academic Press, New York, 1999.
doi: 10.1007/978-3-642-39765-33.![]() |
[26] |
H. Shen, X. N. Song and Z. Wang,
Robust fault-tolerant control of uncertain fractional-order systems against actuator faults, IET Control Theory & Appl., 7 (2013), 1233-1241.
doi: 10.1049/iet-cta.2012.0822. |
[27] |
J. Shen and J. D. Cao,
Necessary and sufficient conditions for consensus of delayed fractional$-$order systems, Asian J. Control, 14 (2012), 1690-1697.
doi: 10.1002/asjc.492. |
[28] |
X. N. Song, Y. Q. Chen and H. Shen, LMI fault tolerant control for interval fractional-order systems with sensor failures , Proc. Fourth IFAC Workshop Fractional Differentiation and its Applications, (2010), Article no. FDA10-126, Badajoz, Spain. Google Scholar |
[29] |
X. N. Song and H. Shen,
Fault tolerant control for interval fractional-order systems with sensor failures, Advances in Mathematical Physics, 2013 (2013), 1-11.
doi: 10.1155/2013/836743. |
[30] |
F. Tao and Q. Zhao,
Synthesis of active fault$-$tolerant control based on Markovian jump system models, IET Control Theory & Appl., 1 (2007), 1160-1168.
doi: 10.1049/iet-cta:20050492. |
[31] |
M. Tavakoli-Kakhki and M. S. Tavazoei,
Estimation of the order and parameters of a fractional order model from a noisy step response data, Journal of Dynamic Systems, Measurement Control, 136 (2014), 1-7.
doi: 10.1115/1.4026345. |
[32] |
E. Uezato and M. Ikeda, Strict LMI conditions for stability, robust stabilization, and $H_\infty$ control of descriptor systems , IEEE Conference on Decision & Contol. IEEE, (1994), 4092–4097.
doi: 10.1109/CDC.1999.828001. |
[33] |
Y. H. Wei, P. W. Tse, Y. Zhao and Y. Wang,
The output feedback control synthesis for a class of singular fractional order systems, ISA Transactions, 69 (2017), 1-9.
doi: 10.1016/j.isatra.2017.04.020. |
[34] |
Y. H. Wei, J. C. Wang, T. Y. Liu and Y. Wang,
Sufficient and necessary conditions for stabilizing singular fractional order systems with partially measurable state, Jouranl of the Franklin Institute, 356 (2019), 1975-1990.
doi: 10.1016/j.jfranklin.2019.01.022. |
[35] |
Z. G. Wu, P. Shi, H. Y. Su and J. Chu,
Reliable $H_\infty$ control for control for discrete$-$time fuzzy systems with infinite$-$distributed delay, IEEE Trans. on Fuzzy Syst., 20 (2012), 22-31.
doi: 10.1109/TFUZZ.2011.2162850. |
[36] |
L. H. Xie,
Output feedback $H_\infty$ control of systems with parameter uncertainty, International Journal of Control, 63 (1996), 741-750.
doi: 10.1080/00207179608921866. |
[37] |
S. Y. Xu and J. Lam, Robust Control and Filtering of Singular Systems, Springer, Berlin, 2006.
doi: 10.1080/00207721.2014.998751. |
[38] |
G. H. Yang, J. L. Wang and Y. C. Soh,
Reliable $H_\infty$ controller design for linear systems, Automatica, 37 (2001), 717-725.
doi: 10.1016/S0005-1098(01)00007-3. |
[39] |
H. Yang, V. Cocquempot and B. Jiang,
Robust fault tolerant tracking control with application to hybrid nonlinear systems, Control Theory & Appl., 3 (2009), 211-224.
doi: 10.1049/iet-cta:20080015. |
[40] |
T. Zhan and S. P. Ma,
The controller design for singular fractional-order systems with fractional order $0<\alpha<1$, The ANZIAM Journal, 60 (2018), 230-248.
doi: 10.1017/S1446181118000202. |
[41] |
X. F. Zhang and Y. Q. Chen, D$-$stability based LMI criteria of stability and stabilization for fractional order systems , ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2015-46692, (2015), 1–6. Google Scholar |
[42] |
X. F. Zhang and Y. Q. Chen,
Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order $\alpha$: The $0<\alpha<1$ case, ISA Transcations, 82 (2018), 42-50.
doi: 10.1016/j.isatra.2017.03.008. |



[1] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[2] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[3] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[4] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[5] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[6] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[7] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[8] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[9] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[10] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
[11] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[12] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[13] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[14] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[15] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[16] |
Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020460 |
[17] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[18] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[19] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[20] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]