\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Decoupling of cubic polynomial matrix systems

  • * Corresponding author: Guoshan Zhang, zhanggs@tju.edu.cn

    * Corresponding author: Guoshan Zhang, zhanggs@tju.edu.cn 
The work is supported by the National Natural Science Foundation of China (grant NO. 61473202 and 61903342) and the Doctor fund project of Zhengzhou University of Light Industry (grant NO. 2017BSJJ009)
Abstract Full Text(HTML) Related Papers Cited by
  • The decoupling of polynomial matrix system is to diagonalize its system matrix. In this paper, decoupling problems for cubic polynomial matrix system are considered. The decoupling conditions for a class of cubic polynomial matrix systems are derived under strict equivalence transformation. By using linearization, isospectral decoupling method for cubic polynomial matrix system is proposed. To be specific, necessary and sufficient conditions of isospectral diagonalization for nonsingular cubic polynomial matrix are given. These results are extended to singular cubic polynomial matrix. Solving processes are given to obtain isospectral diagonal cubic polynomial matrix for nonsingular and singular cases. Finally, illustrating examples are provided to verify the main results.

    Mathematics Subject Classification: Primary: 15A18, 15A21; Secondary: 65F15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Chu and N. Del Buono, Total decoupling of general quadratic pencils, Part Ⅰ: Theory, Journal of Sound and Vibration, 309 (2008), 96-111. 
    [2] M. Chu and N. Del Buono, Total decoupling of general quadratic pencils, Part Ⅱ: Structure preserving isospectral flows, Journal of Sound and Vibration, 309 (2008), 112-128. 
    [3] G. R. Duan, Analysis and Design of Descriptor Linear Systems , Springer, 2010. doi: 10.1007/978-1-4419-6397-0.
    [4] I. GohbergP. Lancaster and  L. RodmanMatrix Polynomials, Academic Press, New York, 1982.  doi: 10.1137/1.9780898719024.
    [5] D. Henrion and J. C. Zúñiga, Detecting infinite zeros in polynomial matrices, IEEE Trans. Circuits and systems Ⅱ-Express Briefs, 52 (2005), 744-745. 
    [6] S. JohanssonB. Kågström and P. Van Dooren, Stratification of full rank polynomial matrices, Linear Algebra and its Applications, 439 (2013), 1062-1090.  doi: 10.1016/j.laa.2012.12.013.
    [7] D. T. KawanoM. Morzfeld and F. Ma, The decoupling of second-order linear systems with a singular mass matrix, Journal of Sound and Vibration, 332 (2013), 6829-6846. 
    [8] P. Lancaster and  M. TismenetskyThe Theory of Matrices, Academic Press, Orlando, 1985. 
    [9] P. Lancaster and L. Rodman, Canonical forms for Hermitian matrix pairs under strict equivalence and congruence, SIAM Review, 47 (2005), 407-443.  doi: 10.1137/S003614450444556X.
    [10] P. Lancaster, Linearization of regular matrix polynomials, Electronic Journal of Linear Algebra, 17 (2008), 21-27.  doi: 10.13001/1081-3810.1246.
    [11] P. Lancaster and I. Zaballa, Diagonalizable quadratic eigenvalue problems, Mechanical Systems and Signal Processing, 23 (2009), 1134-1144. 
    [12] D. S. MackeyN. MackeyC. Mehl and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 971-1004.  doi: 10.1137/050628350.
    [13] M. Morzfeld and F. Ma, The decoupling of damped linear systems in configuration and state spaces, Journal of Sound and Vibration, 330 (2011), 155-161. 
    [14] L. TaslamanF. Tisseur and I. Zaballa, Triangularizing matrix polynomials, Linear Algebra and Its Applications, 439 (2013), 1679-1699.  doi: 10.1016/j.laa.2013.05.006.
    [15] F. D. TeránF. M. Dopico and D. S. Mackey, Linearizations of singular matrix polynomials and the recovery of minimal indices, Electronic Journal of Linear Algebra, 18 (2009), 371-402.  doi: 10.13001/1081-3810.1320.
    [16] F. D. TeránF. M. Dopico and D. S. Mackey, Spectral equivalence of matrix polynomials and the index sum theorem, Linear Algebra and Its Applications, 459 (2014), 264-333.  doi: 10.1016/j.laa.2014.07.007.
    [17] F. TisseurS. D. Garvey and C. Munro, Deflating quadratic matrix polynomials with structure preserving transformations, Linear Algebra and Its Applications, 435 (2011), 464-479.  doi: 10.1016/j.laa.2010.06.028.
    [18] F. Tisseur and I. Zaballa, Triangularizing quadratic matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 312-337.  doi: 10.1137/120867640.
    [19] C. Tunc, On the existence of periodic solutions of functional differential equations of the third order, Applied and Computational Mathematics, 15 (2016), 189-199. 
    [20] A. I. Vardulakis, Linear Multivariable Control: Algebraic Analysis and Synthesis Methods , Wiley, Chichester, U. K. 1991.
    [21] D. Z. ZhengLinear System Theory, 2$^nd$ edition, Tsinghua University Press, Beijing, 2002. 
    [22] J. C. Zúñiga Anaya, On diagonalizable quadratic eigenvalue problems , Note#2. Technical Note, March 2009.
    [23] J. C. Zúñiga Anaya, Diagonalization of quadratic matrix polynomials, System & Control Letters, 59 (2010), 105-113.  doi: 10.1016/j.sysconle.2009.12.005.
  • 加载中
SHARE

Article Metrics

HTML views(1523) PDF downloads(339) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return