-
Previous Article
On the GSOR iteration method for image restoration
- NACO Home
- This Issue
-
Next Article
Fault-tolerant control against actuator failures for uncertain singular fractional order systems
Decoupling of cubic polynomial matrix systems
1. | School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
2. | School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China |
3. | School of Science, Shenyang University of Technology, Shenyang 110870, China |
The decoupling of polynomial matrix system is to diagonalize its system matrix. In this paper, decoupling problems for cubic polynomial matrix system are considered. The decoupling conditions for a class of cubic polynomial matrix systems are derived under strict equivalence transformation. By using linearization, isospectral decoupling method for cubic polynomial matrix system is proposed. To be specific, necessary and sufficient conditions of isospectral diagonalization for nonsingular cubic polynomial matrix are given. These results are extended to singular cubic polynomial matrix. Solving processes are given to obtain isospectral diagonal cubic polynomial matrix for nonsingular and singular cases. Finally, illustrating examples are provided to verify the main results.
References:
[1] |
M. Chu and N. Del Buono, Total decoupling of general quadratic pencils, Part Ⅰ: Theory, Journal of Sound and Vibration, 309 (2008), 96-111. Google Scholar |
[2] |
M. Chu and N. Del Buono, Total decoupling of general quadratic pencils, Part Ⅱ: Structure preserving isospectral flows, Journal of Sound and Vibration, 309 (2008), 112-128. Google Scholar |
[3] |
G. R. Duan, Analysis and Design of Descriptor Linear Systems , Springer, 2010.
doi: 10.1007/978-1-4419-6397-0. |
[4] |
I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
doi: 10.1137/1.9780898719024.![]() ![]() |
[5] |
D. Henrion and J. C. Zúñiga, Detecting infinite zeros in polynomial matrices, IEEE Trans. Circuits and systems Ⅱ-Express Briefs, 52 (2005), 744-745. Google Scholar |
[6] |
S. Johansson, B. Kågström and P. Van Dooren,
Stratification of full rank polynomial matrices, Linear Algebra and its Applications, 439 (2013), 1062-1090.
doi: 10.1016/j.laa.2012.12.013. |
[7] |
D. T. Kawano, M. Morzfeld and F. Ma, The decoupling of second-order linear systems with a singular mass matrix, Journal of Sound and Vibration, 332 (2013), 6829-6846. Google Scholar |
[8] |
P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, Orlando, 1985.
![]() |
[9] |
P. Lancaster and L. Rodman,
Canonical forms for Hermitian matrix pairs under strict equivalence and congruence, SIAM Review, 47 (2005), 407-443.
doi: 10.1137/S003614450444556X. |
[10] |
P. Lancaster,
Linearization of regular matrix polynomials, Electronic Journal of Linear Algebra, 17 (2008), 21-27.
doi: 10.13001/1081-3810.1246. |
[11] |
P. Lancaster and I. Zaballa, Diagonalizable quadratic eigenvalue problems, Mechanical Systems and Signal Processing, 23 (2009), 1134-1144. Google Scholar |
[12] |
D. S. Mackey, N. Mackey, C. Mehl and V. Mehrmann,
Vector spaces of linearizations for matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 971-1004.
doi: 10.1137/050628350. |
[13] |
M. Morzfeld and F. Ma, The decoupling of damped linear systems in configuration and state spaces, Journal of Sound and Vibration, 330 (2011), 155-161. Google Scholar |
[14] |
L. Taslaman, F. Tisseur and I. Zaballa,
Triangularizing matrix polynomials, Linear Algebra and Its Applications, 439 (2013), 1679-1699.
doi: 10.1016/j.laa.2013.05.006. |
[15] |
F. D. Terán, F. M. Dopico and D. S. Mackey,
Linearizations of singular matrix polynomials and the recovery of minimal indices, Electronic Journal of Linear Algebra, 18 (2009), 371-402.
doi: 10.13001/1081-3810.1320. |
[16] |
F. D. Terán, F. M. Dopico and D. S. Mackey,
Spectral equivalence of matrix polynomials and the index sum theorem, Linear Algebra and Its Applications, 459 (2014), 264-333.
doi: 10.1016/j.laa.2014.07.007. |
[17] |
F. Tisseur, S. D. Garvey and C. Munro,
Deflating quadratic matrix polynomials with structure preserving transformations, Linear Algebra and Its Applications, 435 (2011), 464-479.
doi: 10.1016/j.laa.2010.06.028. |
[18] |
F. Tisseur and I. Zaballa,
Triangularizing quadratic matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 312-337.
doi: 10.1137/120867640. |
[19] |
C. Tunc,
On the existence of periodic solutions of functional differential equations of the third order, Applied and Computational Mathematics, 15 (2016), 189-199.
|
[20] |
A. I. Vardulakis, Linear Multivariable Control: Algebraic Analysis and Synthesis Methods , Wiley, Chichester, U. K. 1991. |
[21] | D. Z. Zheng, Linear System Theory, 2$^nd$ edition, Tsinghua University Press, Beijing, 2002. Google Scholar |
[22] |
J. C. Zúñiga Anaya, On diagonalizable quadratic eigenvalue problems , Note#2. Technical Note, March 2009. Google Scholar |
[23] |
J. C. Zúñiga Anaya,
Diagonalization of quadratic matrix polynomials, System & Control Letters, 59 (2010), 105-113.
doi: 10.1016/j.sysconle.2009.12.005. |
show all references
References:
[1] |
M. Chu and N. Del Buono, Total decoupling of general quadratic pencils, Part Ⅰ: Theory, Journal of Sound and Vibration, 309 (2008), 96-111. Google Scholar |
[2] |
M. Chu and N. Del Buono, Total decoupling of general quadratic pencils, Part Ⅱ: Structure preserving isospectral flows, Journal of Sound and Vibration, 309 (2008), 112-128. Google Scholar |
[3] |
G. R. Duan, Analysis and Design of Descriptor Linear Systems , Springer, 2010.
doi: 10.1007/978-1-4419-6397-0. |
[4] |
I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
doi: 10.1137/1.9780898719024.![]() ![]() |
[5] |
D. Henrion and J. C. Zúñiga, Detecting infinite zeros in polynomial matrices, IEEE Trans. Circuits and systems Ⅱ-Express Briefs, 52 (2005), 744-745. Google Scholar |
[6] |
S. Johansson, B. Kågström and P. Van Dooren,
Stratification of full rank polynomial matrices, Linear Algebra and its Applications, 439 (2013), 1062-1090.
doi: 10.1016/j.laa.2012.12.013. |
[7] |
D. T. Kawano, M. Morzfeld and F. Ma, The decoupling of second-order linear systems with a singular mass matrix, Journal of Sound and Vibration, 332 (2013), 6829-6846. Google Scholar |
[8] |
P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, Orlando, 1985.
![]() |
[9] |
P. Lancaster and L. Rodman,
Canonical forms for Hermitian matrix pairs under strict equivalence and congruence, SIAM Review, 47 (2005), 407-443.
doi: 10.1137/S003614450444556X. |
[10] |
P. Lancaster,
Linearization of regular matrix polynomials, Electronic Journal of Linear Algebra, 17 (2008), 21-27.
doi: 10.13001/1081-3810.1246. |
[11] |
P. Lancaster and I. Zaballa, Diagonalizable quadratic eigenvalue problems, Mechanical Systems and Signal Processing, 23 (2009), 1134-1144. Google Scholar |
[12] |
D. S. Mackey, N. Mackey, C. Mehl and V. Mehrmann,
Vector spaces of linearizations for matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 971-1004.
doi: 10.1137/050628350. |
[13] |
M. Morzfeld and F. Ma, The decoupling of damped linear systems in configuration and state spaces, Journal of Sound and Vibration, 330 (2011), 155-161. Google Scholar |
[14] |
L. Taslaman, F. Tisseur and I. Zaballa,
Triangularizing matrix polynomials, Linear Algebra and Its Applications, 439 (2013), 1679-1699.
doi: 10.1016/j.laa.2013.05.006. |
[15] |
F. D. Terán, F. M. Dopico and D. S. Mackey,
Linearizations of singular matrix polynomials and the recovery of minimal indices, Electronic Journal of Linear Algebra, 18 (2009), 371-402.
doi: 10.13001/1081-3810.1320. |
[16] |
F. D. Terán, F. M. Dopico and D. S. Mackey,
Spectral equivalence of matrix polynomials and the index sum theorem, Linear Algebra and Its Applications, 459 (2014), 264-333.
doi: 10.1016/j.laa.2014.07.007. |
[17] |
F. Tisseur, S. D. Garvey and C. Munro,
Deflating quadratic matrix polynomials with structure preserving transformations, Linear Algebra and Its Applications, 435 (2011), 464-479.
doi: 10.1016/j.laa.2010.06.028. |
[18] |
F. Tisseur and I. Zaballa,
Triangularizing quadratic matrix polynomials, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 312-337.
doi: 10.1137/120867640. |
[19] |
C. Tunc,
On the existence of periodic solutions of functional differential equations of the third order, Applied and Computational Mathematics, 15 (2016), 189-199.
|
[20] |
A. I. Vardulakis, Linear Multivariable Control: Algebraic Analysis and Synthesis Methods , Wiley, Chichester, U. K. 1991. |
[21] | D. Z. Zheng, Linear System Theory, 2$^nd$ edition, Tsinghua University Press, Beijing, 2002. Google Scholar |
[22] |
J. C. Zúñiga Anaya, On diagonalizable quadratic eigenvalue problems , Note#2. Technical Note, March 2009. Google Scholar |
[23] |
J. C. Zúñiga Anaya,
Diagonalization of quadratic matrix polynomials, System & Control Letters, 59 (2010), 105-113.
doi: 10.1016/j.sysconle.2009.12.005. |
[1] |
Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025 |
[2] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[3] |
Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010 |
[4] |
Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135 |
[5] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[6] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[7] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[8] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[9] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[10] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[11] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[12] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[13] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[14] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[15] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[16] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
[17] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[18] |
Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020356 |
[19] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[20] |
Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020358 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]