[1]
|
N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim., 10 (2008), 147-161.
|
[2]
|
D. Bushaw, Optimal discontinuous forcing terms, in Contributions to the Theory of Nonlinear Oscillations, Vol. IV (ed. S. Lefshetz), Princeton Univ. Press, Princeton, New Jersey, (1958), 29–52.
|
[3]
|
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.
doi: 10.1007/s101070100263.
|
[4]
|
R. Fletcher, Practical Methods of Optimization Volume 1: Unconstrained Optimization, John Wiley & Sons, 1987.
|
[5]
|
I. Flüotz and H. Junr, Optimum and quasi-optimum control of third-and fourth-order systems, Technical Report 2, 1963.
|
[6]
|
A. Fuller, Relay control systems optimized for various performance criteria, in Automatic and Remote Control, Proc. First World Congress IFAC Moscow, vol. 1, 1960, 510–519.
|
[7]
|
P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, Computing forward-difference intervals for numerical optimization, SIAM Journal on Scientific and Statistical Computing, 4 (1983), 310-321.
doi: 10.1137/0904025.
|
[8]
|
B. S. Goh, Algorithms for unconstrained optimization problems via control theory, Journal of Optimization Theory and Applications, 92 (1997), 581-604.
doi: 10.1023/A:1022607507153.
|
[9]
|
B. S. Goh, Greatest descent algorithms in unconstrained optimization, Journal of Optimization Theory and Applications, 142 (2009), 275-289.
doi: 10.1007/s10957-009-9533-4.
|
[10]
|
B. S. Goh, Convergence of algorithms in optimization and solutions of nonlinear equations, Journal of Optimization Theory and Applications, 144 (2010), 43-55.
doi: 10.1007/s10957-009-9583-7.
|
[11]
|
B. S. Goh, Approximate greatest descent methods for optimization with equality constraints, Journal of Optimization Theory and Applications, 148 (2011), 505-527.
doi: 10.1007/s10957-010-9765-3.
|
[12]
|
B. S. Goh, W. J. Leong and K. L. Teo, Robustness of convergence proofs in numerical methods in unconstrained optimization, in Optimization and Control Methods in Industrial Engineering and Construction, Intelligent Systems, Control and Automation: Science and Engineering 72, Springer Netherlands, (2014), 1–9.
|
[13]
|
B. S. Goh and D. B. McDonald, Newton methods to solve a system of nonlinear algebraic equations, Journal of Optimization Theory and Applications, 164 (2015), 261-276.
doi: 10.1007/s10957-014-0544-4.
|
[14]
|
A. Hedar, Studies on Metaheuristics for Continuous Global Optimization Problems, PhD Thesis, Kyoto University, Japan, 2004.
|
[15]
|
J. Kowalik and J. Morrison, Analysis of kinetic data for allosteric enzyme reactions as a nonlinear regression problem, Mathematical Biosciences, 2 (1968), 57-66.
|
[16]
|
I. Kupka, The ubiquity of fuller's phenomenon, Nonlinear Controllability and Optimal Control, 133 (1990), 313-350.
|
[17]
|
J. P. LaSalle, Time optimal control systems, Proceedings of the National Academy of Sciences of the United States of America.
doi: 10.1073/pnas.45.4.573.
|
[18]
|
J. P. LaSalle, Recent advances in liapunov stability theory, SIAM Review, 6 (1964), 1-11.
doi: 10.1137/1006001.
|
[19]
|
M. S. Lee, B. S. Goh, H. G. Harno and K. H. Lim, On a two-phase approximate greatest descent method for nonlinear optimization with equality constraints, Numerical Algebra, Control & Optimization, 8 (2018), 325-336.
doi: 10.3934/naco.2018020.
|
[20]
|
G. Leitmann, The Calculus of Variations and Optimal Control, Vol. 20 of Mathematical Concepts and Methods in Science and Engineering, Plenum Press, New York, 1981.
|
[21]
|
J. J. Moré, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software, ACM Transactions on Mathematical Software (TOMS), 7 (1981), 17-41.
doi: 10.1145/355934.355936.
|
[22]
|
J. M. Ortega, Stability of difference equations and convergence of iterative processes, SIAM Journal on Numerical Analysis, 10 (1973), 268-282.
doi: 10.1137/0710026.
|
[23]
|
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, NY, 1970.
|
[24]
|
B. T. Polyak, Newton's method and its use in optimization, European Journal of Operational Research, 181 (2007), 1086-1096.
doi: 10.1016/j.ejor.2005.06.076.
|
[25]
|
M. I. Zelikin and V. F. Borisov, Regimes with increasingly more frequent switchings in optimal control problems, Tr. Mat. Inst. Akad. Nauk SSSR, 197 (1991), 85-167.
|
[26]
|
M. I. Zelikin and V. F. Borisov, Theory of Chattering Control: With Applications to Astronautics, Robotics, Economics, and Engineering, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4612-2702-1.
|