-
Previous Article
Improving whale optimization algorithm for feature selection with a time-varying transfer function
- NACO Home
- This Issue
-
Next Article
Piecewise quadratic bounding functions for finding real roots of polynomials
Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C
Faculty of Exact Sciences and Sciences of Nature and Life, Department of Mathematics and informatics, University of Oum El Bouaghi, 04000, Algeria |
In this paper we derive the extremal ranks and inertias of the matrix $ X+X^{\ast}-P $, with respect to $ X $, where $ P\in\mathbb{C} _{H}^{n\times n} $ is given, $ X $ is a least rank solution to the matrix equation $ AXB = C $, and then give necessary and sufficient conditions for $ X+X^{\ast}\succ P $ $ \left( \geq P\text{, }\prec P\text{, }\leq P\right) $ in the Löwner partial ordering. As consequence, we establish necessary and sufficient conditions for the matrix equation $ AXB = C $ to have a Hermitian Re-positive or Re-negative definite solution.
References:
[1] |
A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2$^{\rm nd}$ ed., Springer, 2003. |
[2] |
S. L. Cambell and C. D. Meyer, Generalized Inverse of Linear Transformations, SIAM, 2008.
doi: 10.1137/1.9780898719048.ch0. |
[3] |
J. Groβ,
Nonnegative-definite and positive definite solutions to the matrix equation $AXA^{\ast} = B$-revisited, Linear Algebra Appl., 321 (2000), 123-129.
doi: 10.1016/S0024-3795(00)00033-1. |
[4] |
S. Guerarra and S. Guedjiba, Common least-rank solution of matrix equations $A_{1}X_{1}B_{1} = C_{1}$ and $A_{2}X_{2} B_{2} = C_{2}$ with applications, Facta Universitatis (Niš). Ser. Math. Inform., 29 (2014), 313–323. |
[5] |
S. Guerarra and S. Guedjiba, Common Hermitian least-rank solution of matrix equations $A_{1}XA_{1}^{\ast} = B_{1}$ and $A_{2}XA_{2}^{\ast} = B_{2}$ subject to inequality restrictions, Facta Universitatis (Niš). Ser. Math. Inform., 30 (2015), 539–554. |
[6] |
S. Guerarra,
Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation, Numer. Algebra, Contr. & Optim., 9 (2019), 15-22.
|
[7] |
C. G. Khatri and S. K. Mitra,
Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579-585.
doi: 10.1137/0131050. |
[8] |
Y. Liu,
Ranks of least squares solutions of the matrix equation $AXB = C$, Comput. Mathe. Applications, 55 (2008), 1270-1278.
doi: 10.1016/j.camwa.2007.06.023. |
[9] |
R. Penrose,
A generalized inverse for matrices, Proc. Camb. Phil. Soc., 52 (1955), 406-413.
|
[10] |
P. S. Stanimirović, G-inverses and canonical forms, Facta Universitatis (Niš). Ser. Math. Inform., 15 (2000), 1–14. |
[11] |
Y. Tian, Rank Equalities Related to Generalized Inverses of Matrices and Their Applications, Master Thesis, Montreal, Quebec, Canada, 2000. |
[12] |
Y. Tian,
The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755.
doi: 10.1007/s100120200015. |
[13] |
Y. Tian and S. Cheng,
The maximal and minimal ranks of $A-BXC$ with applications, New York J. Math., 9 (2003), 345-362.
|
[14] |
Y. Tian,
Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433 (2010), 263-296.
doi: 10.1016/j.laa.2010.02.018. |
[15] |
Y. Tian,
Maximization and minimization of the rank and inertias of the Hermitian matrix expression $A-BX-\left(BX\right) ^{\ast}$ with applications, Linear Algebra Appl., 434 (2011), 2109-2139.
doi: 10.1016/j.laa.2010.12.010. |
[16] |
Y. Tian and H. Wang,
Relations between least squares and least rank solution of the matrix equations $AXB=C$, Appl. Math. Comput., 219 (2013), 10293-10301.
doi: 10.1016/j.amc.2013.03.137. |
[17] |
X. Zhang,
Hermitian nonnegative-definite and positive-definite solutions of the matrix equation $AXB=C$, Appl. Math. E-Notes, 4 (2004), 40-47.
|
show all references
References:
[1] |
A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2$^{\rm nd}$ ed., Springer, 2003. |
[2] |
S. L. Cambell and C. D. Meyer, Generalized Inverse of Linear Transformations, SIAM, 2008.
doi: 10.1137/1.9780898719048.ch0. |
[3] |
J. Groβ,
Nonnegative-definite and positive definite solutions to the matrix equation $AXA^{\ast} = B$-revisited, Linear Algebra Appl., 321 (2000), 123-129.
doi: 10.1016/S0024-3795(00)00033-1. |
[4] |
S. Guerarra and S. Guedjiba, Common least-rank solution of matrix equations $A_{1}X_{1}B_{1} = C_{1}$ and $A_{2}X_{2} B_{2} = C_{2}$ with applications, Facta Universitatis (Niš). Ser. Math. Inform., 29 (2014), 313–323. |
[5] |
S. Guerarra and S. Guedjiba, Common Hermitian least-rank solution of matrix equations $A_{1}XA_{1}^{\ast} = B_{1}$ and $A_{2}XA_{2}^{\ast} = B_{2}$ subject to inequality restrictions, Facta Universitatis (Niš). Ser. Math. Inform., 30 (2015), 539–554. |
[6] |
S. Guerarra,
Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation, Numer. Algebra, Contr. & Optim., 9 (2019), 15-22.
|
[7] |
C. G. Khatri and S. K. Mitra,
Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579-585.
doi: 10.1137/0131050. |
[8] |
Y. Liu,
Ranks of least squares solutions of the matrix equation $AXB = C$, Comput. Mathe. Applications, 55 (2008), 1270-1278.
doi: 10.1016/j.camwa.2007.06.023. |
[9] |
R. Penrose,
A generalized inverse for matrices, Proc. Camb. Phil. Soc., 52 (1955), 406-413.
|
[10] |
P. S. Stanimirović, G-inverses and canonical forms, Facta Universitatis (Niš). Ser. Math. Inform., 15 (2000), 1–14. |
[11] |
Y. Tian, Rank Equalities Related to Generalized Inverses of Matrices and Their Applications, Master Thesis, Montreal, Quebec, Canada, 2000. |
[12] |
Y. Tian,
The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745-755.
doi: 10.1007/s100120200015. |
[13] |
Y. Tian and S. Cheng,
The maximal and minimal ranks of $A-BXC$ with applications, New York J. Math., 9 (2003), 345-362.
|
[14] |
Y. Tian,
Equalities and inequalities for inertias of Hermitian matrices with applications, Linear Algebra Appl., 433 (2010), 263-296.
doi: 10.1016/j.laa.2010.02.018. |
[15] |
Y. Tian,
Maximization and minimization of the rank and inertias of the Hermitian matrix expression $A-BX-\left(BX\right) ^{\ast}$ with applications, Linear Algebra Appl., 434 (2011), 2109-2139.
doi: 10.1016/j.laa.2010.12.010. |
[16] |
Y. Tian and H. Wang,
Relations between least squares and least rank solution of the matrix equations $AXB=C$, Appl. Math. Comput., 219 (2013), 10293-10301.
doi: 10.1016/j.amc.2013.03.137. |
[17] |
X. Zhang,
Hermitian nonnegative-definite and positive-definite solutions of the matrix equation $AXB=C$, Appl. Math. E-Notes, 4 (2004), 40-47.
|
[1] |
Sihem Guerarra. Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation AXA*=B. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 15-22. doi: 10.3934/naco.2019002 |
[2] |
Abdessalam Kara, Said Guedjiba. Some representations of moore-penrose inverse for the sum of two operators and the extension of the fill-fishkind formula. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021015 |
[3] |
Yun Cai, Song Li. Convergence and stability of iteratively reweighted least squares for low-rank matrix recovery. Inverse Problems and Imaging, 2017, 11 (4) : 643-661. doi: 10.3934/ipi.2017030 |
[4] |
Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial and Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171 |
[5] |
Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014 |
[6] |
Ke Wei, Jian-Feng Cai, Tony F. Chan, Shingyu Leung. Guarantees of riemannian optimization for low rank matrix completion. Inverse Problems and Imaging, 2020, 14 (2) : 233-265. doi: 10.3934/ipi.2020011 |
[7] |
Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072 |
[8] |
Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015 |
[9] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[10] |
Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems and Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601 |
[11] |
Yongge Tian. A survey on rank and inertia optimization problems of the matrix-valued function $A + BXB^{*}$. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 289-326. doi: 10.3934/naco.2015.5.289 |
[12] |
Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127 |
[13] |
Simon Arridge, Pascal Fernsel, Andreas Hauptmann. Joint reconstruction and low-rank decomposition for dynamic inverse problems. Inverse Problems and Imaging, 2022, 16 (3) : 483-523. doi: 10.3934/ipi.2021059 |
[14] |
H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175 |
[15] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems and Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[16] |
Huiyuan Guo, Quan Yu, Xinzhen Zhang, Lulu Cheng. Low rank matrix minimization with a truncated difference of nuclear norm and Frobenius norm regularization. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022045 |
[17] |
Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018 |
[18] |
Ngoc Minh Trang Vu, Laurent Lefèvre. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations and Control Theory, 2015, 4 (2) : 205-220. doi: 10.3934/eect.2015.4.205 |
[19] |
Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741 |
[20] |
Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]