March  2021, 11(1): 99-115. doi: 10.3934/naco.2020018

A density matrix approach to the convergence of the self-consistent field iteration

1. 

Lindstedtsvägen 25, Department of Mathematics, SeRC - Swedish e-Science research center, Royal Institute of Technology, SE-11428 Stockholm, Sweden

2. 

Division of Scientific Computing, Department of Information Technology, , Uppsala University, Box 337, SE-75105 Uppsala, Sweden

* Corresponding author

Received  November 2018 Revised  December 2019 Published  March 2020

In this paper, we present a local convergence analysis of the self-consistent field (SCF) iteration using the density matrix as the state of a fixed-point iteration. Conditions for local convergence are formulated in terms of the spectral radius of the Jacobian of a fixed-point map. The relationship between convergence and certain properties of the problem is explored by deriving upper bounds expressed in terms of higher gaps. This gives more information regarding how the gaps between eigenvalues of the problem affect the convergence, and hence these bounds are more insightful on the convergence behaviour than standard convergence results. We also provide a detailed analysis to describe the difference between the bounds and the exact convergence factor for an illustrative example. Finally we present numerical examples and compare the exact value of the convergence factor with the observed behaviour of SCF, along with our new bounds and the characterization using the higher gaps. We provide heuristic convergence factor estimates in situations where the bounds fail to well capture the convergence.

Citation: Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018
References:
[1]

Z. Bai, D. Lu and B. Vandereycken, Robust Rayleigh quotient minimization and nonlinear eigenvalue problems, , SIAM J. Sci. Comput., 40 (2018), A3495–A3522. doi: 10.1137/18M1167681.  Google Scholar

[2]

D. R. Bowler and T. Mizayaki, $\mathcal{O}$($n$) methods in electronic structure calculations, , Rep. Prog. Phys., 75 (2012), 036503, http://iopscience.iop.org/article/10.1088/0034-4885/75/3/036503. doi: 10.1088/0034-4885/75/3/036503.  Google Scholar

[3]

Y. CaiL.-H. ZhangZ. Bai and R.-C. Li, On an eigenvector-dependent nonlinear eigenvalue problem, SIAM J. Matrix Anal. Appl., 39 (2018), 1360-1382.  doi: 10.1137/17M115935X.  Google Scholar

[4]

E. Cancés and C. L. Bris, On the convergence of SCF algorithms for the Hartree-Fock equations, M2AN, Math. Model. Numer. Anal., 34 (2000), 749-774.  doi: 10.1051/m2an:2000102.  Google Scholar

[5]

T. Helgaker, P. Jorgensen and J. Olsen, Molecular Electronic-Structure Theory, John Wiley and Sons, 2000. doi: 10.1002/9781119019572.  Google Scholar

[6]

H. V. Henderson and S. R. Searle, Vec and vech operators for matrices, with some uses in jacobians and multivariate statistics, Can J. Stat., 7 (1979), 65-81.  doi: 10.2307/3315017.  Google Scholar

[7]

N. Higham, Functions of Matrices, Society for Industrial and Applied Mathematics, 2008. doi: 10.1137/1.9780898717778.  Google Scholar

[8]

T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer-Verlag, 1995. doi: 10.1007/978-3-642-66282-9.  Google Scholar

[9]

A. Levitt, Convergence of gradient-based algorithms for the Hartree-Fock equations, ESAIM: Math. Model. Numer. Anal., 46 (2012), 1321-1336.  doi: 10.1051/m2an/2012008.  Google Scholar

[10]

X. LiuX. WangZ. Wen and Y. Yuan, On the convergence of the self-consistent field iteration in Kohn-Sham density functional theory, SIAM J. Matrix Anal. Appl., 35 (2014), 546-558.  doi: 10.1137/130911032.  Google Scholar

[11]

X. LiuZ. WenX. WangM. Ulbrich and Y. Yuan, On the analysis of the discretized Kohn-Sham density functional theory, SIAM J. Numer. Anal., 53 (2015), 1758-1785.  doi: 10.1137/140957962.  Google Scholar

[12]

C. E. McCulloch, Symmetric matrix derivatives with applications, J. Amer. Stat. Assoc., 77 (1982), 679-682.  doi: 10.2307/2287736.  Google Scholar

[13]

A. Messiah, Quantum Mechanics, Dover Publications, 1999. Google Scholar

[14]

T. T. NgoM. Bellalij and Y. Saad, The trace ratio optimization problem for dimensionality reduction, SIAM J. Matrix Anal. Appl., 31 (2010), 2950-2971.  doi: 10.1137/090776603.  Google Scholar

[15]

P. Pulay, Convergence acceleration of iterative sequences. The case of scf iteration, Chem. Phys. Lett., 73 (1979), 393-398.  doi: 10.1016/0009-2614(80)80396-4.  Google Scholar

[16]

T. Rohwedder and R. Schneider, An analysis for the DIIS acceleration method used in quantum chemistry calculations, J. Math. Chem., 49 (2011), 1889-1914.  doi: 10.1007/s10910-011-9863-y.  Google Scholar

[17]

E. Rudberg, Quantum Chemistry for Large Scale Systems, PhD thesis, Royal Institute of Technology, 2007, Available at http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4561. Google Scholar

[18]

E. RudbergE. H. Rubensson and P. Saƚek, Kohn-Sham density functional theory electronic structure calculations with linearly scaling computational time and memory usage, J. Chem. Theory Comput., 7 (2011), 340-350.  doi: 10.1021/ct100611z.  Google Scholar

[19]

E. RudbergE. H. RubenssonP. Saƚek and A. Kruchinina, Ergo: An open-source program for linear-scaling electronic structure calculations, SoftwareX, 7 (2018), 107-111.  doi: 10.1016/j.softx.2018.03.005.  Google Scholar

[20]

Y. SaadJ. T. Chelikowsky and S. M. Shontz, Numerical methods for electronic structure calculations of materials, SIAM Rev., 52 (2010), 3-54.  doi: 10.1137/060651653.  Google Scholar

[21]

R. E. Stanton, Intrinsic convergence in closed-shell SCF calculations. A general criterion, J. Chem. Phys., 75 (1981), 5416-5422.  doi: 10.1063/1.441942.  Google Scholar

[22]

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, 1996. Google Scholar

[23]

C. YangW. Gao and J. C. Meza, On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 30 (2009), 1773-1788.  doi: 10.1137/080716293.  Google Scholar

[24]

L.-H. ZhangL.-Z. Liao and M. K. Ng, Fast algorithms for the generalized Foley Sammon discriminant analysis, SIAM J. Matrix Anal. Appl., 31 (2010), 1584-1605.  doi: 10.1137/080720863.  Google Scholar

[25]

L.-H. ZhangW. H. Yang and L.-Z. Liao, A note on the trace quotient problem, Opt. Lett., 8 (2014), 1637-1645.  doi: 10.1007/s11590-013-0680-z.  Google Scholar

show all references

References:
[1]

Z. Bai, D. Lu and B. Vandereycken, Robust Rayleigh quotient minimization and nonlinear eigenvalue problems, , SIAM J. Sci. Comput., 40 (2018), A3495–A3522. doi: 10.1137/18M1167681.  Google Scholar

[2]

D. R. Bowler and T. Mizayaki, $\mathcal{O}$($n$) methods in electronic structure calculations, , Rep. Prog. Phys., 75 (2012), 036503, http://iopscience.iop.org/article/10.1088/0034-4885/75/3/036503. doi: 10.1088/0034-4885/75/3/036503.  Google Scholar

[3]

Y. CaiL.-H. ZhangZ. Bai and R.-C. Li, On an eigenvector-dependent nonlinear eigenvalue problem, SIAM J. Matrix Anal. Appl., 39 (2018), 1360-1382.  doi: 10.1137/17M115935X.  Google Scholar

[4]

E. Cancés and C. L. Bris, On the convergence of SCF algorithms for the Hartree-Fock equations, M2AN, Math. Model. Numer. Anal., 34 (2000), 749-774.  doi: 10.1051/m2an:2000102.  Google Scholar

[5]

T. Helgaker, P. Jorgensen and J. Olsen, Molecular Electronic-Structure Theory, John Wiley and Sons, 2000. doi: 10.1002/9781119019572.  Google Scholar

[6]

H. V. Henderson and S. R. Searle, Vec and vech operators for matrices, with some uses in jacobians and multivariate statistics, Can J. Stat., 7 (1979), 65-81.  doi: 10.2307/3315017.  Google Scholar

[7]

N. Higham, Functions of Matrices, Society for Industrial and Applied Mathematics, 2008. doi: 10.1137/1.9780898717778.  Google Scholar

[8]

T. Kato, Perturbation Theory for Linear Operators, 2nd edition, Springer-Verlag, 1995. doi: 10.1007/978-3-642-66282-9.  Google Scholar

[9]

A. Levitt, Convergence of gradient-based algorithms for the Hartree-Fock equations, ESAIM: Math. Model. Numer. Anal., 46 (2012), 1321-1336.  doi: 10.1051/m2an/2012008.  Google Scholar

[10]

X. LiuX. WangZ. Wen and Y. Yuan, On the convergence of the self-consistent field iteration in Kohn-Sham density functional theory, SIAM J. Matrix Anal. Appl., 35 (2014), 546-558.  doi: 10.1137/130911032.  Google Scholar

[11]

X. LiuZ. WenX. WangM. Ulbrich and Y. Yuan, On the analysis of the discretized Kohn-Sham density functional theory, SIAM J. Numer. Anal., 53 (2015), 1758-1785.  doi: 10.1137/140957962.  Google Scholar

[12]

C. E. McCulloch, Symmetric matrix derivatives with applications, J. Amer. Stat. Assoc., 77 (1982), 679-682.  doi: 10.2307/2287736.  Google Scholar

[13]

A. Messiah, Quantum Mechanics, Dover Publications, 1999. Google Scholar

[14]

T. T. NgoM. Bellalij and Y. Saad, The trace ratio optimization problem for dimensionality reduction, SIAM J. Matrix Anal. Appl., 31 (2010), 2950-2971.  doi: 10.1137/090776603.  Google Scholar

[15]

P. Pulay, Convergence acceleration of iterative sequences. The case of scf iteration, Chem. Phys. Lett., 73 (1979), 393-398.  doi: 10.1016/0009-2614(80)80396-4.  Google Scholar

[16]

T. Rohwedder and R. Schneider, An analysis for the DIIS acceleration method used in quantum chemistry calculations, J. Math. Chem., 49 (2011), 1889-1914.  doi: 10.1007/s10910-011-9863-y.  Google Scholar

[17]

E. Rudberg, Quantum Chemistry for Large Scale Systems, PhD thesis, Royal Institute of Technology, 2007, Available at http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4561. Google Scholar

[18]

E. RudbergE. H. Rubensson and P. Saƚek, Kohn-Sham density functional theory electronic structure calculations with linearly scaling computational time and memory usage, J. Chem. Theory Comput., 7 (2011), 340-350.  doi: 10.1021/ct100611z.  Google Scholar

[19]

E. RudbergE. H. RubenssonP. Saƚek and A. Kruchinina, Ergo: An open-source program for linear-scaling electronic structure calculations, SoftwareX, 7 (2018), 107-111.  doi: 10.1016/j.softx.2018.03.005.  Google Scholar

[20]

Y. SaadJ. T. Chelikowsky and S. M. Shontz, Numerical methods for electronic structure calculations of materials, SIAM Rev., 52 (2010), 3-54.  doi: 10.1137/060651653.  Google Scholar

[21]

R. E. Stanton, Intrinsic convergence in closed-shell SCF calculations. A general criterion, J. Chem. Phys., 75 (1981), 5416-5422.  doi: 10.1063/1.441942.  Google Scholar

[22]

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, 1996. Google Scholar

[23]

C. YangW. Gao and J. C. Meza, On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 30 (2009), 1773-1788.  doi: 10.1137/080716293.  Google Scholar

[24]

L.-H. ZhangL.-Z. Liao and M. K. Ng, Fast algorithms for the generalized Foley Sammon discriminant analysis, SIAM J. Matrix Anal. Appl., 31 (2010), 1584-1605.  doi: 10.1137/080720863.  Google Scholar

[25]

L.-H. ZhangW. H. Yang and L.-Z. Liao, A note on the trace quotient problem, Opt. Lett., 8 (2014), 1637-1645.  doi: 10.1007/s11590-013-0680-z.  Google Scholar

Figure 1.  Schematic illustration of elements of $ \Omega_3 $ as indices of $ R $ for the real-valued problem in subsection 4.1 with $ n = 7, p = 3, \alpha = 10.0 $
Figure 2.  Convergence factor and bounds for the illustrative example
Figure 3.  Norm of $ \mathcal{L}(x_1x_2^H) $ and $ \mathcal{L}(x_2x_3^H) $
Figure 4.  Variance of $ \delta_1 $ and $ \delta_2 $ with $ \epsilon $
Figure 5.  Complex-valued problem for $ n = 30 $ ((a),(b) and (d)), $ p = 15, \alpha = 40.0 $ ((a),(b) and (c))
Figure 6.  Real-valued problem for $ n = 60 $, $ \alpha = 5.0 $, $ p = 25 $
Figure 7.  Water molecule problem with $ n = 13, p = 5 $
[1]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[2]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[3]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[4]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[5]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[6]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[10]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[11]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[14]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[17]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[18]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[19]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[20]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

 Impact Factor: 

Metrics

  • PDF downloads (91)
  • HTML views (341)
  • Cited by (0)

[Back to Top]