March  2021, 11(1): 127-142. doi: 10.3934/naco.2020020

Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control

1. 

Key Laboratory of Advanced Design, and, Intelligent Computing, Ministry of Education, School of Software, Dalian University, Dalian, 116622, China

2. 

College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China

* Corresponding author: lh8481@tom.com; wangxingan@dlu.edu.cn

Received  May 2019 Revised  October 2019 Published  March 2020

Fund Project: The first author is supported by National Natural Science Foundation of China (No.61802040), Natural Science Foundation of Liaoning Province (No.20180551241) and High-level Talent Innovation Support Program of Dalian City (No.2018RQ75). The second author is supported by National Key Laboratory for Precision Hot Processing of Metals(No.614290903061808) and Doctoral Starting Foundation of Dalian University (No.2017QL024)

This paper investigates the problem of dissipative control for a class of uncertain singular Markovian jump systems. Different from the traditional control strategy, a derivative gain and impulsive control part are added in the proposed controller. A linearization approach via congruence transformations is proposed to solve the feedback design problem. In addition, the derived results contain $ H_{\infty} $ and passive control as special cases. Finally, examples are provided to illustrate the effectiveness and applicability of the proposed methods.

Citation: Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020
References:
[1]

M. Aliyu and E. Boukas, $H_{\infty}$ filtering for nonlinear singular systems, IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (2012), 2395-2404.  doi: 10.1109/TCSI.2012.2189038.  Google Scholar

[2]

E. Boukas, Control of Singular Systems with Random Abrupt Changes, Springer, Berlin, 2008.  Google Scholar

[3]

B. Brogliato, R.Lozano, B. Maschke and O. Egeland, Dissipative Systems Analysis and Control: Theory and Applications, Springer, New York, 2000. doi: 10.1007/978-3-030-19420-8.  Google Scholar

[4]

L. Dai, Singular Control Systems, Springer, Berlin, 1989. doi: 10.1007/BFb0002475.  Google Scholar

[5]

M. Deistler, Singular arma systems: A structure theory, Numerical Algebra, Control and Optimization, 9 (2019), 383-391.  doi: 10.3934/naco.2019025.  Google Scholar

[6]

Y. DongJ. Sun and Q. Wu, $H_{\infty}$ filtering for a class of stochastic Markovian jump systems with impulsive effects, International Journal of Robust and Nonlinear Control, 18 (2008), 1-13.  doi: 10.1002/rnc.1194.  Google Scholar

[7]

G. Duan, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010. doi: 10.1007/978-1-4419-6397-0.  Google Scholar

[8]

Z. Feng and P. Shi, Admissibilization of singular interval-valued fuzzy systems, IEEE Transactions on Fuzzy Systems, 25 (2016), 1765–1776. Google Scholar

[9]

Z. Feng and P. Shi, Sliding mode control of singular stochastic Markov jump systems, IEEE Transactions on Automatic Control, 62 (2017), 4266-4273.  doi: 10.1109/TAC.2017.2687048.  Google Scholar

[10]

Z. GuanJ. Yao and D. Hill, Robust $H_{\infty}$ control of singular impulsive systems with uncertain perturbations, IEEE Transactions on Circuits and Systems II: Express Briefs, 52 (2005), 293-298.   Google Scholar

[11] L. Huang, Linear Algebra in System and Control Theory, Science Press, Beijing, 1984.   Google Scholar
[12]

B. JiangY. KaoC. Gao and X. Yao, Passification of uncertain singular semi-Markovian jump systems with actuator failures via sliding mode approach, IEEE Transactions on Automatic Control, 62 (2017), 4138-4143.  doi: 10.1109/TAC.2017.2680540.  Google Scholar

[13]

B. JiangY. KaoH. Karimi and C. Gao, Stability and stabilization for singular switching semi-Markovian jump systems with generally uncertain transition rates, IEEE Transactions on Automatic Control, 63 (2018), 3919-3926.  doi: 10.1109/tac.2018.2819654.  Google Scholar

[14]

S. MarirM. Chadli and D. Bouagada, New admissibility conditions for singular linear continuous-time fractional-order systems, Journal of the Franklin Institute, 354 (2017), 752-766.  doi: 10.1016/j.jfranklin.2016.10.022.  Google Scholar

[15]

E. Medina and D. Lawrence, State feedback stabilization of linear impulsive systems, Automatica, 45 (2009), 1476-1480.  doi: 10.1016/j.automatica.2009.02.003.  Google Scholar

[16]

I. Petersen, A stabilization algorithm for a class of uncertain linear systems, Systems & Control Letters, 8 (1987), 351-357.  doi: 10.1016/0167-6911(87)90102-2.  Google Scholar

[17]

P. ShiH. Wang and C. Lim, Network-based event-triggered control for singular systems with quantizations, IEEE Transactions on Industrial Electronics, 63 (2015), 1230-1238.   Google Scholar

[18]

Y. WangY. XiaH. Shen and P. Zhou, SMC design for robust stabilization of nonlinear Markovian jump singular systems, IEEE Transactions on Automatic Control, 63 (2017), 219-224.  doi: 10.1109/tac.2017.2720970.  Google Scholar

[19]

J. Willems, Dissipative dynamical systems, Part I: General theory, Archive for Rational Mechanics and Analysis, 45 (1972), 321-351.  doi: 10.1007/BF00276493.  Google Scholar

[20]

Y. XiaE. BoukasP. Shi and J. Zhang, Stability and stabilization of continuous-time singular hybrid systems, Automatica, 45 (2009), 1504-1509.  doi: 10.1016/j.automatica.2009.02.008.  Google Scholar

[21]

S. XieL. Xie and D. Souza, Robust dissipative control for linear systems with dissipative uncertainty, International Journal of Control, 70 (1998), 169-191.  doi: 10.1080/002071798222352.  Google Scholar

[22]

H. XuK. Teo and X. Liu, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38 (2008), 1419-1422.  doi: 10.1109/TSMC.1972.4309113.  Google Scholar

[23]

J. Xu and J. Sun, Finite-time stability of linear time-varying singular impulsive systems, IET Control Theory and Applications, 4 (2010), 2239-2244.  doi: 10.1049/iet-cta.2010.0242.  Google Scholar

[24]

S. Xu and J. Lam, Robust Control and Filtering of Singular Systems, Springer, Berlin, 2006.  Google Scholar

[25]

M. YangY. WangJ. Xiao and Y. Huang, Robust synchronization of singular complex switched networks with parametric uncertainties and unknown coupling topologies via impulsive control, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 4404-4416.  doi: 10.1016/j.cnsns.2012.03.021.  Google Scholar

[26]

X. YangX. Li and J. Cao, Robust finite-time stability of singular nonlinear systems with interval time-varying delay, Journal of the Franklin Institute, 355 (2018), 1241-1258.  doi: 10.1016/j.jfranklin.2017.12.018.  Google Scholar

[27]

J. YaoZ. GuanG. Chen and D. Ho, Stability, robust stabilization and $H_{\infty}$ control of singular-impulsive systems via impulsive control, Systems & Control Letters, 55 (2006), 879-886.  doi: 10.1016/j.sysconle.2006.05.002.  Google Scholar

[28]

H. ZhangZ. Guan and G. Feng, Reliable dis sipative control for stochastic impulsive systems, Automatica, 44 (2008), 1004-1010.  doi: 10.1016/j.automatica.2007.08.014.  Google Scholar

[29]

Q. ZhangL. LiX. Yan and S. Spurgeon, Sliding mode control for singular stochastic Markovian jump systems with uncertainties, Automatica, 79 (2017), 27-34.  doi: 10.1016/j.automatica.2017.01.002.  Google Scholar

[30]

Y. ZhangY. HeM. Wu and J. Zhang, Stabilization for Markovian jump systems with partial information on transition probability based on free-connection weighting matrices, Automatica, 47 (2011), 79-84.  doi: 10.1016/j.automatica.2010.09.009.  Google Scholar

[31]

J. Zhao and D. Hill, Dissipative theory for switched systems, IEEE Transactions on Automatic Control, 53 (2008), 941-953.  doi: 10.1109/TAC.2008.920237.  Google Scholar

[32]

G. ZhuangQ. MaB. ZhangS. Xu and J. Xia, Admissibility and stabilization of stochastic singular Markovian jump systems with time delays, Systems & Control Letters, 114 (2018), 1-10.  doi: 10.1016/j.sysconle.2018.02.004.  Google Scholar

show all references

References:
[1]

M. Aliyu and E. Boukas, $H_{\infty}$ filtering for nonlinear singular systems, IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (2012), 2395-2404.  doi: 10.1109/TCSI.2012.2189038.  Google Scholar

[2]

E. Boukas, Control of Singular Systems with Random Abrupt Changes, Springer, Berlin, 2008.  Google Scholar

[3]

B. Brogliato, R.Lozano, B. Maschke and O. Egeland, Dissipative Systems Analysis and Control: Theory and Applications, Springer, New York, 2000. doi: 10.1007/978-3-030-19420-8.  Google Scholar

[4]

L. Dai, Singular Control Systems, Springer, Berlin, 1989. doi: 10.1007/BFb0002475.  Google Scholar

[5]

M. Deistler, Singular arma systems: A structure theory, Numerical Algebra, Control and Optimization, 9 (2019), 383-391.  doi: 10.3934/naco.2019025.  Google Scholar

[6]

Y. DongJ. Sun and Q. Wu, $H_{\infty}$ filtering for a class of stochastic Markovian jump systems with impulsive effects, International Journal of Robust and Nonlinear Control, 18 (2008), 1-13.  doi: 10.1002/rnc.1194.  Google Scholar

[7]

G. Duan, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010. doi: 10.1007/978-1-4419-6397-0.  Google Scholar

[8]

Z. Feng and P. Shi, Admissibilization of singular interval-valued fuzzy systems, IEEE Transactions on Fuzzy Systems, 25 (2016), 1765–1776. Google Scholar

[9]

Z. Feng and P. Shi, Sliding mode control of singular stochastic Markov jump systems, IEEE Transactions on Automatic Control, 62 (2017), 4266-4273.  doi: 10.1109/TAC.2017.2687048.  Google Scholar

[10]

Z. GuanJ. Yao and D. Hill, Robust $H_{\infty}$ control of singular impulsive systems with uncertain perturbations, IEEE Transactions on Circuits and Systems II: Express Briefs, 52 (2005), 293-298.   Google Scholar

[11] L. Huang, Linear Algebra in System and Control Theory, Science Press, Beijing, 1984.   Google Scholar
[12]

B. JiangY. KaoC. Gao and X. Yao, Passification of uncertain singular semi-Markovian jump systems with actuator failures via sliding mode approach, IEEE Transactions on Automatic Control, 62 (2017), 4138-4143.  doi: 10.1109/TAC.2017.2680540.  Google Scholar

[13]

B. JiangY. KaoH. Karimi and C. Gao, Stability and stabilization for singular switching semi-Markovian jump systems with generally uncertain transition rates, IEEE Transactions on Automatic Control, 63 (2018), 3919-3926.  doi: 10.1109/tac.2018.2819654.  Google Scholar

[14]

S. MarirM. Chadli and D. Bouagada, New admissibility conditions for singular linear continuous-time fractional-order systems, Journal of the Franklin Institute, 354 (2017), 752-766.  doi: 10.1016/j.jfranklin.2016.10.022.  Google Scholar

[15]

E. Medina and D. Lawrence, State feedback stabilization of linear impulsive systems, Automatica, 45 (2009), 1476-1480.  doi: 10.1016/j.automatica.2009.02.003.  Google Scholar

[16]

I. Petersen, A stabilization algorithm for a class of uncertain linear systems, Systems & Control Letters, 8 (1987), 351-357.  doi: 10.1016/0167-6911(87)90102-2.  Google Scholar

[17]

P. ShiH. Wang and C. Lim, Network-based event-triggered control for singular systems with quantizations, IEEE Transactions on Industrial Electronics, 63 (2015), 1230-1238.   Google Scholar

[18]

Y. WangY. XiaH. Shen and P. Zhou, SMC design for robust stabilization of nonlinear Markovian jump singular systems, IEEE Transactions on Automatic Control, 63 (2017), 219-224.  doi: 10.1109/tac.2017.2720970.  Google Scholar

[19]

J. Willems, Dissipative dynamical systems, Part I: General theory, Archive for Rational Mechanics and Analysis, 45 (1972), 321-351.  doi: 10.1007/BF00276493.  Google Scholar

[20]

Y. XiaE. BoukasP. Shi and J. Zhang, Stability and stabilization of continuous-time singular hybrid systems, Automatica, 45 (2009), 1504-1509.  doi: 10.1016/j.automatica.2009.02.008.  Google Scholar

[21]

S. XieL. Xie and D. Souza, Robust dissipative control for linear systems with dissipative uncertainty, International Journal of Control, 70 (1998), 169-191.  doi: 10.1080/002071798222352.  Google Scholar

[22]

H. XuK. Teo and X. Liu, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38 (2008), 1419-1422.  doi: 10.1109/TSMC.1972.4309113.  Google Scholar

[23]

J. Xu and J. Sun, Finite-time stability of linear time-varying singular impulsive systems, IET Control Theory and Applications, 4 (2010), 2239-2244.  doi: 10.1049/iet-cta.2010.0242.  Google Scholar

[24]

S. Xu and J. Lam, Robust Control and Filtering of Singular Systems, Springer, Berlin, 2006.  Google Scholar

[25]

M. YangY. WangJ. Xiao and Y. Huang, Robust synchronization of singular complex switched networks with parametric uncertainties and unknown coupling topologies via impulsive control, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 4404-4416.  doi: 10.1016/j.cnsns.2012.03.021.  Google Scholar

[26]

X. YangX. Li and J. Cao, Robust finite-time stability of singular nonlinear systems with interval time-varying delay, Journal of the Franklin Institute, 355 (2018), 1241-1258.  doi: 10.1016/j.jfranklin.2017.12.018.  Google Scholar

[27]

J. YaoZ. GuanG. Chen and D. Ho, Stability, robust stabilization and $H_{\infty}$ control of singular-impulsive systems via impulsive control, Systems & Control Letters, 55 (2006), 879-886.  doi: 10.1016/j.sysconle.2006.05.002.  Google Scholar

[28]

H. ZhangZ. Guan and G. Feng, Reliable dis sipative control for stochastic impulsive systems, Automatica, 44 (2008), 1004-1010.  doi: 10.1016/j.automatica.2007.08.014.  Google Scholar

[29]

Q. ZhangL. LiX. Yan and S. Spurgeon, Sliding mode control for singular stochastic Markovian jump systems with uncertainties, Automatica, 79 (2017), 27-34.  doi: 10.1016/j.automatica.2017.01.002.  Google Scholar

[30]

Y. ZhangY. HeM. Wu and J. Zhang, Stabilization for Markovian jump systems with partial information on transition probability based on free-connection weighting matrices, Automatica, 47 (2011), 79-84.  doi: 10.1016/j.automatica.2010.09.009.  Google Scholar

[31]

J. Zhao and D. Hill, Dissipative theory for switched systems, IEEE Transactions on Automatic Control, 53 (2008), 941-953.  doi: 10.1109/TAC.2008.920237.  Google Scholar

[32]

G. ZhuangQ. MaB. ZhangS. Xu and J. Xia, Admissibility and stabilization of stochastic singular Markovian jump systems with time delays, Systems & Control Letters, 114 (2018), 1-10.  doi: 10.1016/j.sysconle.2018.02.004.  Google Scholar

Figure 1.  The Markov process
Figure 2.  The state trajectories of the open-loop system (when $ \omega(t) = 0 $)
Figure 3.  The state trajectories of the closed-loop system (when $ \omega(t) = 0 $)
Table 1.  Minimum attenuation level calculated by different methods
$ \gamma_{min} $ $ \rho=-0.5 $ $ \rho=0 $ $ \rho=0.5 $ $ \rho=1 $ $ \rho=1.5 $
Theorem 10 ([28]) 1.2704 1.5821 2.2548 4.4628 ————
Corollary 3.4 ($ K_{ei}=0 $) 1.1724 1.1738 1.1743 1.1749 1.1753
Corollary 3.4 ($ K_{ei}\neq0 $) 1.1040 1.1050 1.1059 1.1067 1.1074
$ \gamma_{min} $ $ \rho=-0.5 $ $ \rho=0 $ $ \rho=0.5 $ $ \rho=1 $ $ \rho=1.5 $
Theorem 10 ([28]) 1.2704 1.5821 2.2548 4.4628 ————
Corollary 3.4 ($ K_{ei}=0 $) 1.1724 1.1738 1.1743 1.1749 1.1753
Corollary 3.4 ($ K_{ei}\neq0 $) 1.1040 1.1050 1.1059 1.1067 1.1074
[1]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[2]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[3]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[6]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[7]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[8]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[9]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[10]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[11]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[14]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[15]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

[16]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[17]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[18]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[19]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[20]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

 Impact Factor: 

Metrics

  • PDF downloads (72)
  • HTML views (379)
  • Cited by (0)

Other articles
by authors

[Back to Top]