
-
Previous Article
Examination of solving optimal control problems with delays using GPOPS-Ⅱ
- NACO Home
- This Issue
-
Next Article
Discriminant analysis of regularized multidimensional scaling
Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation
1. | Department of Mathematics, Sinop University, Sinop, 57000, Turkey |
2. | Turkish Scientific and Technological Research Council (TÜBİTAK), Ankara, 06100, Turkey |
We apply a space adaptive interior penalty discontinuous Galerkin method for solving advective Allen-Cahn equation with expanding and contracting velocity fields. The advective Allen-Cahn equation is first discretized in time and the resulting semi-linear elliptic PDE is solved by an adaptive algorithm using a residual-based a posteriori error estimator. The a posteriori error estimator contains additional terms due to the non-divergence-free velocity field. Numerical examples demonstrate the effectiveness and accuracy of the adaptive approach by resolving the sharp layers accurately.
References:
[1] |
M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics, John Wiley & Sons, Inc., 2000.
doi: 10.1002/9781118032824. |
[2] |
D. N. Arnold,
An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 724-760.
doi: 10.1137/0719052. |
[3] |
I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation, Clarendon Press, 2001.
![]() |
[4] |
J. W. Barrett, J. F. Blowey and H. Garcke,
Finite element approximation of a fourth order nonlinear degenerate parabolic equation, Numerische Mathematik, 80 (1998), 525-556.
doi: 10.1007/s002110050377. |
[5] |
A. Cangiani, E. H. Georgoulis and S. Metcalfe,
Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems, IMA Journal of Numerical Analysis, 34 (2013), 1578-1597.
doi: 10.1093/imanum/drt052. |
[6] |
L. Chen, $i$FEM: An Innovative Finite Element Methods Package in MATLAB, Technical Report, Department of Mathematics, University of California, Irvine, 2008. Google Scholar |
[7] |
L. Q. Chen,
Phase-field models for microstructure evolution, Annual Review of Materials Research, 32 (2002), 113-140.
doi: 10.1146/annurev.matsci.32.112001.132041. |
[8] |
P. Deuflhard and M. Weiser, Adaptive Numerical Solution of PDEs, De Gruyter Textbook, Walter de Gruyter, 2012.
doi: 10.1515/9783110283112. |
[9] |
A. Ern, A. F. Stephansen and M. Vohralík,
Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems, Journal of Computational and Applied Mathematics, 234 (2010), 114-130.
doi: 10.1016/j.cam.2009.12.009. |
[10] |
P. C. Hohenberg and B. I. Halperin,
Theory of dynamic critical phenomena, Reviews of Modern Physics, 49 (1977), 435-479.
doi: 10.1103/RevModPhys.49.435. |
[11] |
R. H. W. Hoppe, G. Kanschat and T. Warburton,
Convergence analysis of an adaptive interior penalty discontinuous Galerkin method, SIAM Journal on Numerical Analysis, 47 (2008), 534-550.
doi: 10.1137/070704599. |
[12] |
P. Houston, C. Schwab and E. Süli,
Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163.
doi: 10.1137/S0036142900374111. |
[13] |
O. A. Karakashian and F. Pascal,
Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM Journal on Numerical Analysis, 45 (2007), 641-665.
doi: 10.1137/05063979X. |
[14] |
B. Karasözen and M. Uzunca,
Time-space adaptive discontinuous Galerkin method for advection-diffusion equations with non-linear reaction mechanism, GEM - International Journal on Geomathematics, 5 (2014), 255-288.
doi: 10.1007/s13137-014-0067-z. |
[15] |
M. S. Khan, Phase Field Methods for Multi-Phase Flow Simulations, PhD Thesis, Technische Universitat Dortmund, Institut für Angewandte Mathematik (LS III), Dortmund, 2009. Google Scholar |
[16] |
P. Lesaint and P. A. Raviert, On a finite element for solving the neutron transport equation, mathematical aspects of finite elements in partial differential equations, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, (1974), 89–123. |
[17] |
W. Liu, Two Dynamical System Models on Real–World Scenarios: A Swarming Control Model and a Surface Tension Model, PhD thesis, University of California, Los Angeles, 2011. |
[18] |
W. Liu, A. Bertozzi and T. Kolokolnikov,
Diffuse interface surface tension models in an expanding flow, Comm. Math. Sci., 10 (2012), 387-418.
doi: 10.4310/CMS.2012.v10.n1.a16. |
[19] |
S. Osher and J. A. Sethian,
Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[20] |
W. H. Reed and T. R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Technical Report LA-UR-73-479, Los Alomos Scientific Laboratory, Los Alomos, NM, 1973. Google Scholar |
[21] |
B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation, Frontiers in Applied Mathematics, SIAM, 2008.
doi: 10.1137/1.9780898717440. |
[22] |
B. Rivière and M. F. Wheeler,
A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems, Computers Math. with Applications, 46 (2003), 141-163.
doi: 10.1016/S0898-1221(03)90086-1. |
[23] |
D. Schötzau and L. Zhu,
A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations, Applied Numerical Mathematics, 59 (2009), 2236-2255.
doi: 10.1016/j.apnum.2008.12.014. |
[24] |
J. Shen, T. Tang and J. Yang,
On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Commun. Math. Sci., 14 (2016), 1517-1534.
doi: 10.4310/CMS.2016.v14.n6.a3. |
[25] |
J. Shen and X. Yang,
A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM Journal on Scientific Computing, 32 (2010), 1159-1179.
doi: 10.1137/09075860X. |
[26] |
P. Solin, K. Segeth and I. Dolezel, Higher-Order Finite Element Methods, Studies in Advanced Mathematics, Chapman & Hall/CRC Press, 2003.
![]() |
[27] |
M. Uzunca, B. Karasözen and M. Manguoğlu, Adaptive discontinuous Galerkin methods for non-linear diffusion-convection-reaction equations, Computers and Chemical Engineering, 68 (2014), 24-37. Google Scholar |
[28] |
D. F. M. Vasconcelos, A. L. Rossa and A. L. G. A. Coutinho, A residual-based Allen-Cahn phase field model for the mixture of incompressible fluid flows, International Journal for Numerical Methods in Fluids, 75 (2014), 645-667. Google Scholar |
[29] |
R. Verfürth,
Robust a posteriori error estimates for stationary convection-diffusion equations, SIAM Journal on Numerical Analysis, 43 (2005), 1766-1782.
doi: 10.1137/040604261. |
[30] |
Z. Zhang and H. Tang,
An adaptive phase field method for the mixture of two incompressible fluids, Computers & Fluids, 36 (2007), 1307-1318.
doi: 10.1016/j.compfluid.2006.12.003. |
show all references
References:
[1] |
M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics, John Wiley & Sons, Inc., 2000.
doi: 10.1002/9781118032824. |
[2] |
D. N. Arnold,
An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 724-760.
doi: 10.1137/0719052. |
[3] |
I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation, Clarendon Press, 2001.
![]() |
[4] |
J. W. Barrett, J. F. Blowey and H. Garcke,
Finite element approximation of a fourth order nonlinear degenerate parabolic equation, Numerische Mathematik, 80 (1998), 525-556.
doi: 10.1007/s002110050377. |
[5] |
A. Cangiani, E. H. Georgoulis and S. Metcalfe,
Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems, IMA Journal of Numerical Analysis, 34 (2013), 1578-1597.
doi: 10.1093/imanum/drt052. |
[6] |
L. Chen, $i$FEM: An Innovative Finite Element Methods Package in MATLAB, Technical Report, Department of Mathematics, University of California, Irvine, 2008. Google Scholar |
[7] |
L. Q. Chen,
Phase-field models for microstructure evolution, Annual Review of Materials Research, 32 (2002), 113-140.
doi: 10.1146/annurev.matsci.32.112001.132041. |
[8] |
P. Deuflhard and M. Weiser, Adaptive Numerical Solution of PDEs, De Gruyter Textbook, Walter de Gruyter, 2012.
doi: 10.1515/9783110283112. |
[9] |
A. Ern, A. F. Stephansen and M. Vohralík,
Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems, Journal of Computational and Applied Mathematics, 234 (2010), 114-130.
doi: 10.1016/j.cam.2009.12.009. |
[10] |
P. C. Hohenberg and B. I. Halperin,
Theory of dynamic critical phenomena, Reviews of Modern Physics, 49 (1977), 435-479.
doi: 10.1103/RevModPhys.49.435. |
[11] |
R. H. W. Hoppe, G. Kanschat and T. Warburton,
Convergence analysis of an adaptive interior penalty discontinuous Galerkin method, SIAM Journal on Numerical Analysis, 47 (2008), 534-550.
doi: 10.1137/070704599. |
[12] |
P. Houston, C. Schwab and E. Süli,
Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163.
doi: 10.1137/S0036142900374111. |
[13] |
O. A. Karakashian and F. Pascal,
Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM Journal on Numerical Analysis, 45 (2007), 641-665.
doi: 10.1137/05063979X. |
[14] |
B. Karasözen and M. Uzunca,
Time-space adaptive discontinuous Galerkin method for advection-diffusion equations with non-linear reaction mechanism, GEM - International Journal on Geomathematics, 5 (2014), 255-288.
doi: 10.1007/s13137-014-0067-z. |
[15] |
M. S. Khan, Phase Field Methods for Multi-Phase Flow Simulations, PhD Thesis, Technische Universitat Dortmund, Institut für Angewandte Mathematik (LS III), Dortmund, 2009. Google Scholar |
[16] |
P. Lesaint and P. A. Raviert, On a finite element for solving the neutron transport equation, mathematical aspects of finite elements in partial differential equations, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, (1974), 89–123. |
[17] |
W. Liu, Two Dynamical System Models on Real–World Scenarios: A Swarming Control Model and a Surface Tension Model, PhD thesis, University of California, Los Angeles, 2011. |
[18] |
W. Liu, A. Bertozzi and T. Kolokolnikov,
Diffuse interface surface tension models in an expanding flow, Comm. Math. Sci., 10 (2012), 387-418.
doi: 10.4310/CMS.2012.v10.n1.a16. |
[19] |
S. Osher and J. A. Sethian,
Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[20] |
W. H. Reed and T. R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Technical Report LA-UR-73-479, Los Alomos Scientific Laboratory, Los Alomos, NM, 1973. Google Scholar |
[21] |
B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation, Frontiers in Applied Mathematics, SIAM, 2008.
doi: 10.1137/1.9780898717440. |
[22] |
B. Rivière and M. F. Wheeler,
A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems, Computers Math. with Applications, 46 (2003), 141-163.
doi: 10.1016/S0898-1221(03)90086-1. |
[23] |
D. Schötzau and L. Zhu,
A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations, Applied Numerical Mathematics, 59 (2009), 2236-2255.
doi: 10.1016/j.apnum.2008.12.014. |
[24] |
J. Shen, T. Tang and J. Yang,
On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Commun. Math. Sci., 14 (2016), 1517-1534.
doi: 10.4310/CMS.2016.v14.n6.a3. |
[25] |
J. Shen and X. Yang,
A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM Journal on Scientific Computing, 32 (2010), 1159-1179.
doi: 10.1137/09075860X. |
[26] |
P. Solin, K. Segeth and I. Dolezel, Higher-Order Finite Element Methods, Studies in Advanced Mathematics, Chapman & Hall/CRC Press, 2003.
![]() |
[27] |
M. Uzunca, B. Karasözen and M. Manguoğlu, Adaptive discontinuous Galerkin methods for non-linear diffusion-convection-reaction equations, Computers and Chemical Engineering, 68 (2014), 24-37. Google Scholar |
[28] |
D. F. M. Vasconcelos, A. L. Rossa and A. L. G. A. Coutinho, A residual-based Allen-Cahn phase field model for the mixture of incompressible fluid flows, International Journal for Numerical Methods in Fluids, 75 (2014), 645-667. Google Scholar |
[29] |
R. Verfürth,
Robust a posteriori error estimates for stationary convection-diffusion equations, SIAM Journal on Numerical Analysis, 43 (2005), 1766-1782.
doi: 10.1137/040604261. |
[30] |
Z. Zhang and H. Tang,
An adaptive phase field method for the mixture of two incompressible fluids, Computers & Fluids, 36 (2007), 1307-1318.
doi: 10.1016/j.compfluid.2006.12.003. |




[1] |
Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021077 |
[2] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402 |
[3] |
Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030 |
[4] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[5] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[6] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
[7] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[8] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[9] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[10] |
Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021054 |
[11] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[12] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[13] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[14] |
Jiahui Chen, Rundong Zhao, Yiying Tong, Guo-Wei Wei. Evolutionary de Rham-Hodge method. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3785-3821. doi: 10.3934/dcdsb.2020257 |
[15] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[16] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[17] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[18] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[19] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[20] |
Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]