[1]
|
K. Anstreicher, Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming, J. Global Optim., 43 (2009), 471-484.
doi: 10.1007/s10898-008-9372-0.
|
[2]
|
A. Beck, A. Ben-Tal and M. Teboulle, Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares, SIAM J. Matrix Anal. Appl., 28 (2006), 425-445.
doi: 10.1137/040616851.
|
[3]
|
A. Beck and M. Teboulle, A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid, Math. Program., 118 (2009), 13-35.
doi: 10.1007/s10107-007-0181-x.
|
[4]
|
A. Beck and M. Teboulle, On minimizing quadratically constrained ratio of two quadratic functions, J. Convex Anal., 17 (2010), 789-804.
|
[5]
|
A. Beck and D. Pan, A branch and bound algorithm for nonconvex quadratic optimization with ball and linear constraints, J. Global Optim., 69 (2017), 309-342.
doi: 10.1007/s10898-017-0521-1.
|
[6]
|
A. Ben-Tal and M. Teboulle, Hidden convexity in some nonconvex quadratically constrained quadratic programming, Math. Program., 72 (1996), 51-63.
doi: 10.1016/0025-5610(95)00020-8.
|
[7]
|
D. Bienstock and A. Michalka, Polynomial solvability of variants of the trust-region subproblem, in Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms(eds. C. Chekuri), SODA, (2014), 380–390.
doi: 10.1137/1.9781611973402.28.
|
[8]
|
S. Burer and K. Anstreicher, Second-order-cone constraints for extended trust-region problems, SIAM J. Optim., 23 (2013), 432-451.
doi: 10.1137/110826862.
|
[9]
|
A. Charnes and W. Cooper, Programming with linear fractional functionals, Nav. Res. Logist. Q., 9 (1962), 181-186.
doi: 10.1002/nav.3800090303.
|
[10]
|
CVX Research, Inc., CVX: Matlab software for disciplined convex programming, version 2.0., http://cvxr.com/cvx, April 2011.
|
[11]
|
W. Dinkelbach, On nonlinear fractional programming, Manag. Sci., 13 (1967), 492-498.
doi: 10.1287/mnsc.13.7.492.
|
[12]
|
M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. Freeman, San Francisco, 1979.
|
[13]
|
G. Golub and C. Loan, An analysis of the total least-squares problem, SIAM J. Numer. Anal., 17 (1980), 883-893.
doi: 10.1137/0717073.
|
[14]
|
M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), 1115-1145.
doi: 10.1145/227683.227684.
|
[15]
|
Y. Hsia and R. L. Sheu, Trust region subproblem with a fixed number of additional linear inequality constraints has polynomial complexity, arXiv: 1312.1398, 2013
|
[16]
|
Z. Luo, W. Ma, A. So, Y. Ye and S. Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Signal Proc. Mag., 27 (2010), 20-34.
|
[17]
|
J. Martínez, Local minimizers of quadratic functions on Euclidean balls and spheres, SIAM J. Optim., 4 (1994), 159-176.
doi: 10.1137/0804009.
|
[18]
|
Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms, SIAM Publications, SIAM, Philadelphia, 1993.
doi: 10.1137/1.9781611970791.
|
[19]
|
Y. Nesterov, Semidefinite relaxation and nonconvex quadratic optimization, Optim. Method Softw., 9 (1998), 141-160.
doi: 10.1080/10556789808805690.
|
[20]
|
Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic Publishers, 2003.
doi: 10.1007/978-1-4419-8853-9.
|
[21]
|
P. Pardalos and A. Phillips, Global optimization of fractional programs, J. Global Optim., 1 (1991), 173-182.
doi: 10.1007/BF00119990.
|
[22]
|
J. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Math. Oper. Res., 28 (2003), 246-267.
doi: 10.1287/moor.28.2.246.14485.
|
[23]
|
Y. Xia, On minimizing the ratio of quadratic functions over an ellipsoid, Optimization, 64 (2015), 1097-1106.
doi: 10.1080/02331934.2013.840623.
|
[24]
|
Y. Xia, A survey of hidden convex optimization, J. Oper. Res. Soc. China., 8 (2020), 1-28.
doi: 10.1007/s40305-019-00286-5.
|
[25]
|
M. Yang and Y. Xia, On Lagrangian duality gap of quadratic fractional programming with a two-sided quadratic constraint, Optim. Lett., 14 (2020), 569–578.,
doi: 10.1007/s11590-018-1320-4.
|
[26]
|
Y. Ye, Approximating quadratic programming with bound and quadratic constraints, Math. Program., 84 (1999), 219-226.
doi: 10.1007/s10107980012a.
|
[27]
|
Y. Ye and S. Zhang, New results on quadratic minimization, SIAM J. Optim., 14 (2003), 245-267.
doi: 10.1137/S105262340139001X.
|