-
Previous Article
Two-stage stochastic variational inequalities for Cournot-Nash equilibrium with risk-averse players under uncertainty
- NACO Home
- This Issue
-
Next Article
Alternating direction method of multipliers with variable metric indefinite proximal terms for convex optimization
Parameter-related projection-based iterative algorithm for a kind of generalized positive semidefinite least squares problem
College of Mathematics and Informatics, Fujian Normal University, Fuzhou, 350007, P. R. China |
A projection-based iterative algorithm, which is related to a single parameter (or the multiple parameters), is proposed to solve the generalized positive semidefinite least squares problem introduced in this paper. The single parameter (or the multiple parameters) projection-based iterative algorithms converges to the optimal solution under certain condition, and the corresponding numerical results are shown too.
References:
[1] |
B. Akesson, J. Jorgensen, N. Poulsen and S. Jorgensen, A generalized autocovariance least-squares method for Kalman filter tuning, Journal of Proccess Control, 18 (2008), 769-779. Google Scholar |
[2] |
J. C. Allwright,
Positive semidefinite matrices: Characterization via conical hulls and least-squares solution of a matrix equation, SIAM Journal on Control and Optimization, 26 (1988), 537-556.
doi: 10.1137/0326032. |
[3] |
Z. X. Chan and D. F. Sun,
Constraint nondegeneracy, strong regularity, and nonsingularity in semidefinite programming, SIAM Journal on Optimization, 19 (2008), 370-396.
doi: 10.1137/070681235. |
[4] |
H. Dai and P. Lancaster,
Linear matrix equations from an inverse problem of vibration theory, Linear Algebra and Its Applications, 246 (1996), 31-47.
doi: 10.1016/0024-3795(94)00311-4. |
[5] |
N. Gillis and P. Sharma,
A semi-analytical approach for the positive semidefinite procrustes problem, Linear Algebra and Its Applications, 540 (2018), 112-137.
doi: 10.1016/j.laa.2017.11.023. |
[6] |
N. Krislock, J. Lang, J. Varah, D. K. Pai and H. P. Seidel, Local compliance estimation via positive semidefinite constrained least squares, IEEE transactions on Robotics, 20 (2004), 1007-1011. Google Scholar |
[7] |
C. J. Li, S. G. Zhang and H. H. Wu,
The proximal point iterative algorithm for the generalized semidefinite least squares problem, ACTA Mathematicae Applicatae Sinica, (in Chinese), 42 (2019), 371-384.
|
[8] |
X. Li, D. F. Sun and K. C. Toh,
A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5. |
[9] |
A. Liao and Z. Bai,
Least-squares solution of AXB = D over symmetric positive semidefinite matrices X, Journal of Computational Mathematics, 21 (2003), 175-182.
|
[10] |
Y. Nesterov, Introductory Lectures On Convex Optimization: A Basic Course, Springer Science and Business Media, 2004.
doi: 10.1007/978-1-4419-8853-9. |
[11] |
H. D. Qi,
Conditional quadratic semidefinite programming: examples and methods, Journal of Operations Research Society of China, 2 (2014), 143-170.
doi: 10.1007/s40305-014-0048-9. |
[12] |
H. D. Qi,
A convex matrix optimization for the additive constant problem in multidimensional scaling with application to locally linear embedding, SIAM Journal on Optimization, 26 (2016), 2564-2590.
doi: 10.1137/15M1043133. |
[13] |
H. D. Qi and D. Sun,
A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 360-385.
doi: 10.1137/050624509. |
[14] |
A. Rinnan, M. Andersson, C. Ridder and B. Engelsen, Recursive weighted partial least squares(rPLS): An efficient varible selection method using PLS, Journal of Chemometrics, 28 (2014), 439-447. Google Scholar |
[15] |
M. L. Stein,
Spatial variation of total column ozone on a global scale, The Annals of Applied Statistics, 1 (2007), 191-210.
doi: 10.1214/07-AOAS106. |
[16] |
K. C. Toh, M. J. Todd and R. H. Tutuncu,
SDPT3 - a Matlab software package for semidefinite programming, Optimization Methods and Software, 11 (1999), 545-581.
doi: 10.1080/10556789908805762. |
[17] |
K. G. Woodgate, Efficient stiffness matrix estimation for elastic structures, Computers and Structures, 69 (1998), 79-84. Google Scholar |
show all references
References:
[1] |
B. Akesson, J. Jorgensen, N. Poulsen and S. Jorgensen, A generalized autocovariance least-squares method for Kalman filter tuning, Journal of Proccess Control, 18 (2008), 769-779. Google Scholar |
[2] |
J. C. Allwright,
Positive semidefinite matrices: Characterization via conical hulls and least-squares solution of a matrix equation, SIAM Journal on Control and Optimization, 26 (1988), 537-556.
doi: 10.1137/0326032. |
[3] |
Z. X. Chan and D. F. Sun,
Constraint nondegeneracy, strong regularity, and nonsingularity in semidefinite programming, SIAM Journal on Optimization, 19 (2008), 370-396.
doi: 10.1137/070681235. |
[4] |
H. Dai and P. Lancaster,
Linear matrix equations from an inverse problem of vibration theory, Linear Algebra and Its Applications, 246 (1996), 31-47.
doi: 10.1016/0024-3795(94)00311-4. |
[5] |
N. Gillis and P. Sharma,
A semi-analytical approach for the positive semidefinite procrustes problem, Linear Algebra and Its Applications, 540 (2018), 112-137.
doi: 10.1016/j.laa.2017.11.023. |
[6] |
N. Krislock, J. Lang, J. Varah, D. K. Pai and H. P. Seidel, Local compliance estimation via positive semidefinite constrained least squares, IEEE transactions on Robotics, 20 (2004), 1007-1011. Google Scholar |
[7] |
C. J. Li, S. G. Zhang and H. H. Wu,
The proximal point iterative algorithm for the generalized semidefinite least squares problem, ACTA Mathematicae Applicatae Sinica, (in Chinese), 42 (2019), 371-384.
|
[8] |
X. Li, D. F. Sun and K. C. Toh,
A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5. |
[9] |
A. Liao and Z. Bai,
Least-squares solution of AXB = D over symmetric positive semidefinite matrices X, Journal of Computational Mathematics, 21 (2003), 175-182.
|
[10] |
Y. Nesterov, Introductory Lectures On Convex Optimization: A Basic Course, Springer Science and Business Media, 2004.
doi: 10.1007/978-1-4419-8853-9. |
[11] |
H. D. Qi,
Conditional quadratic semidefinite programming: examples and methods, Journal of Operations Research Society of China, 2 (2014), 143-170.
doi: 10.1007/s40305-014-0048-9. |
[12] |
H. D. Qi,
A convex matrix optimization for the additive constant problem in multidimensional scaling with application to locally linear embedding, SIAM Journal on Optimization, 26 (2016), 2564-2590.
doi: 10.1137/15M1043133. |
[13] |
H. D. Qi and D. Sun,
A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 360-385.
doi: 10.1137/050624509. |
[14] |
A. Rinnan, M. Andersson, C. Ridder and B. Engelsen, Recursive weighted partial least squares(rPLS): An efficient varible selection method using PLS, Journal of Chemometrics, 28 (2014), 439-447. Google Scholar |
[15] |
M. L. Stein,
Spatial variation of total column ozone on a global scale, The Annals of Applied Statistics, 1 (2007), 191-210.
doi: 10.1214/07-AOAS106. |
[16] |
K. C. Toh, M. J. Todd and R. H. Tutuncu,
SDPT3 - a Matlab software package for semidefinite programming, Optimization Methods and Software, 11 (1999), 545-581.
doi: 10.1080/10556789908805762. |
[17] |
K. G. Woodgate, Efficient stiffness matrix estimation for elastic structures, Computers and Structures, 69 (1998), 79-84. Google Scholar |
Parameters | Spending time | Parameters | Spending time | ||||
(71, 65, 67) | T1 | 62.1 | 15.6 | (59, 8, 30) | T1 | 0.017 | 0.016 |
(53, 39, 48) | 2.13 | 1.95 | (103, 61, 85) | 1.82 | 1.09 | ||
(101, 33, 61) | 0.25 | 0.19 | (102, 78, 90) | 8.95 | 5.61 | ||
(102, 19, 95) | 0.040 | 0.039 | (93, 20, 92) | 0.041 | 0.038 | ||
(66, 48, 53) | 10.1 | 3.28 | (58, 18, 45) | 0.05 | 0.05 | ||
(62, 4, 38) | T2 | 0.009 | 0.008 | (49, 41, 42) | T2 | 115.6 | 8.67 |
(71, 11, 24) | 0.04 | 0.02 | (94, 44, 92) | 0.94 | 0.28 | ||
(92, 43, 64) | 1.99 | 0.45 | (98, 19, 93) | 0.05 | 0.03 | ||
(93, 7, 48) | 0.014 | 0.012 | (73, 4, 30) | 0.008 | 0.007 | ||
(86, 64, 72) | 32.9 | 3.99 | (78, 39, 62) | 1.54 | 0.34 | ||
(94, 16, 85, (6)) | T3 | 0.03 | 0.02 | (91, 43, 83, (21)) | T3 | 0.90 | 0.20 |
(60, 36, 53, (25)) | 1.18 | 0.28 | (54, 11, 24, (9)) | 0.04 | 0.02 | ||
(31, 8, 10, (7)) | 0.12 | 0.03 | (86, 9, 83, (1)) | 0.019 | 0.015 | ||
(78, 55, 69, (7)) | 20.7 | 0.77 | (97, 17, 33, (15)) | 0.08 | 0.04 | ||
(98, 43, 51, (3)) | 10.3 | 0.44 | (42, 10, 36, (9)) | 0.023 | 0.019 |
Parameters | Spending time | Parameters | Spending time | ||||
(71, 65, 67) | T1 | 62.1 | 15.6 | (59, 8, 30) | T1 | 0.017 | 0.016 |
(53, 39, 48) | 2.13 | 1.95 | (103, 61, 85) | 1.82 | 1.09 | ||
(101, 33, 61) | 0.25 | 0.19 | (102, 78, 90) | 8.95 | 5.61 | ||
(102, 19, 95) | 0.040 | 0.039 | (93, 20, 92) | 0.041 | 0.038 | ||
(66, 48, 53) | 10.1 | 3.28 | (58, 18, 45) | 0.05 | 0.05 | ||
(62, 4, 38) | T2 | 0.009 | 0.008 | (49, 41, 42) | T2 | 115.6 | 8.67 |
(71, 11, 24) | 0.04 | 0.02 | (94, 44, 92) | 0.94 | 0.28 | ||
(92, 43, 64) | 1.99 | 0.45 | (98, 19, 93) | 0.05 | 0.03 | ||
(93, 7, 48) | 0.014 | 0.012 | (73, 4, 30) | 0.008 | 0.007 | ||
(86, 64, 72) | 32.9 | 3.99 | (78, 39, 62) | 1.54 | 0.34 | ||
(94, 16, 85, (6)) | T3 | 0.03 | 0.02 | (91, 43, 83, (21)) | T3 | 0.90 | 0.20 |
(60, 36, 53, (25)) | 1.18 | 0.28 | (54, 11, 24, (9)) | 0.04 | 0.02 | ||
(31, 8, 10, (7)) | 0.12 | 0.03 | (86, 9, 83, (1)) | 0.019 | 0.015 | ||
(78, 55, 69, (7)) | 20.7 | 0.77 | (97, 17, 33, (15)) | 0.08 | 0.04 | ||
(98, 43, 51, (3)) | 10.3 | 0.44 | (42, 10, 36, (9)) | 0.023 | 0.019 |
[1] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[2] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[3] |
Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007 |
[4] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[5] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[6] |
Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 |
[7] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[8] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[9] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[10] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[11] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[12] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[13] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[14] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[15] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[16] |
Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107 |
[17] |
Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 |
[18] |
Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088 |
[19] |
Editorial Office. Retraction: Xiaohong Zhu, Lihe Zhou, Zili Yang and Joyati Debnath, A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1265-1265. doi: 10.3934/dcdss.2019087 |
[20] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]