-
Previous Article
Two-stage stochastic variational inequalities for Cournot-Nash equilibrium with risk-averse players under uncertainty
- NACO Home
- This Issue
-
Next Article
Alternating direction method of multipliers with variable metric indefinite proximal terms for convex optimization
Parameter-related projection-based iterative algorithm for a kind of generalized positive semidefinite least squares problem
College of Mathematics and Informatics, Fujian Normal University, Fuzhou, 350007, P. R. China |
A projection-based iterative algorithm, which is related to a single parameter (or the multiple parameters), is proposed to solve the generalized positive semidefinite least squares problem introduced in this paper. The single parameter (or the multiple parameters) projection-based iterative algorithms converges to the optimal solution under certain condition, and the corresponding numerical results are shown too.
References:
[1] |
B. Akesson, J. Jorgensen, N. Poulsen and S. Jorgensen,
A generalized autocovariance least-squares method for Kalman filter tuning, Journal of Proccess Control, 18 (2008), 769-779.
|
[2] |
J. C. Allwright,
Positive semidefinite matrices: Characterization via conical hulls and least-squares solution of a matrix equation, SIAM Journal on Control and Optimization, 26 (1988), 537-556.
doi: 10.1137/0326032. |
[3] |
Z. X. Chan and D. F. Sun,
Constraint nondegeneracy, strong regularity, and nonsingularity in semidefinite programming, SIAM Journal on Optimization, 19 (2008), 370-396.
doi: 10.1137/070681235. |
[4] |
H. Dai and P. Lancaster,
Linear matrix equations from an inverse problem of vibration theory, Linear Algebra and Its Applications, 246 (1996), 31-47.
doi: 10.1016/0024-3795(94)00311-4. |
[5] |
N. Gillis and P. Sharma,
A semi-analytical approach for the positive semidefinite procrustes problem, Linear Algebra and Its Applications, 540 (2018), 112-137.
doi: 10.1016/j.laa.2017.11.023. |
[6] |
N. Krislock, J. Lang, J. Varah, D. K. Pai and H. P. Seidel,
Local compliance estimation via positive semidefinite constrained least squares, IEEE transactions on Robotics, 20 (2004), 1007-1011.
|
[7] |
C. J. Li, S. G. Zhang and H. H. Wu,
The proximal point iterative algorithm for the generalized semidefinite least squares problem, ACTA Mathematicae Applicatae Sinica, (in Chinese), 42 (2019), 371-384.
|
[8] |
X. Li, D. F. Sun and K. C. Toh,
A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5. |
[9] |
A. Liao and Z. Bai,
Least-squares solution of AXB = D over symmetric positive semidefinite matrices X, Journal of Computational Mathematics, 21 (2003), 175-182.
|
[10] |
Y. Nesterov, Introductory Lectures On Convex Optimization: A Basic Course, Springer Science and Business Media, 2004.
doi: 10.1007/978-1-4419-8853-9. |
[11] |
H. D. Qi,
Conditional quadratic semidefinite programming: examples and methods, Journal of Operations Research Society of China, 2 (2014), 143-170.
doi: 10.1007/s40305-014-0048-9. |
[12] |
H. D. Qi,
A convex matrix optimization for the additive constant problem in multidimensional scaling with application to locally linear embedding, SIAM Journal on Optimization, 26 (2016), 2564-2590.
doi: 10.1137/15M1043133. |
[13] |
H. D. Qi and D. Sun,
A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 360-385.
doi: 10.1137/050624509. |
[14] |
A. Rinnan, M. Andersson, C. Ridder and B. Engelsen,
Recursive weighted partial least squares(rPLS): An efficient varible selection method using PLS, Journal of Chemometrics, 28 (2014), 439-447.
|
[15] |
M. L. Stein,
Spatial variation of total column ozone on a global scale, The Annals of Applied Statistics, 1 (2007), 191-210.
doi: 10.1214/07-AOAS106. |
[16] |
K. C. Toh, M. J. Todd and R. H. Tutuncu,
SDPT3 - a Matlab software package for semidefinite programming, Optimization Methods and Software, 11 (1999), 545-581.
doi: 10.1080/10556789908805762. |
[17] |
K. G. Woodgate,
Efficient stiffness matrix estimation for elastic structures, Computers and Structures, 69 (1998), 79-84.
|
show all references
References:
[1] |
B. Akesson, J. Jorgensen, N. Poulsen and S. Jorgensen,
A generalized autocovariance least-squares method for Kalman filter tuning, Journal of Proccess Control, 18 (2008), 769-779.
|
[2] |
J. C. Allwright,
Positive semidefinite matrices: Characterization via conical hulls and least-squares solution of a matrix equation, SIAM Journal on Control and Optimization, 26 (1988), 537-556.
doi: 10.1137/0326032. |
[3] |
Z. X. Chan and D. F. Sun,
Constraint nondegeneracy, strong regularity, and nonsingularity in semidefinite programming, SIAM Journal on Optimization, 19 (2008), 370-396.
doi: 10.1137/070681235. |
[4] |
H. Dai and P. Lancaster,
Linear matrix equations from an inverse problem of vibration theory, Linear Algebra and Its Applications, 246 (1996), 31-47.
doi: 10.1016/0024-3795(94)00311-4. |
[5] |
N. Gillis and P. Sharma,
A semi-analytical approach for the positive semidefinite procrustes problem, Linear Algebra and Its Applications, 540 (2018), 112-137.
doi: 10.1016/j.laa.2017.11.023. |
[6] |
N. Krislock, J. Lang, J. Varah, D. K. Pai and H. P. Seidel,
Local compliance estimation via positive semidefinite constrained least squares, IEEE transactions on Robotics, 20 (2004), 1007-1011.
|
[7] |
C. J. Li, S. G. Zhang and H. H. Wu,
The proximal point iterative algorithm for the generalized semidefinite least squares problem, ACTA Mathematicae Applicatae Sinica, (in Chinese), 42 (2019), 371-384.
|
[8] |
X. Li, D. F. Sun and K. C. Toh,
A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5. |
[9] |
A. Liao and Z. Bai,
Least-squares solution of AXB = D over symmetric positive semidefinite matrices X, Journal of Computational Mathematics, 21 (2003), 175-182.
|
[10] |
Y. Nesterov, Introductory Lectures On Convex Optimization: A Basic Course, Springer Science and Business Media, 2004.
doi: 10.1007/978-1-4419-8853-9. |
[11] |
H. D. Qi,
Conditional quadratic semidefinite programming: examples and methods, Journal of Operations Research Society of China, 2 (2014), 143-170.
doi: 10.1007/s40305-014-0048-9. |
[12] |
H. D. Qi,
A convex matrix optimization for the additive constant problem in multidimensional scaling with application to locally linear embedding, SIAM Journal on Optimization, 26 (2016), 2564-2590.
doi: 10.1137/15M1043133. |
[13] |
H. D. Qi and D. Sun,
A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 360-385.
doi: 10.1137/050624509. |
[14] |
A. Rinnan, M. Andersson, C. Ridder and B. Engelsen,
Recursive weighted partial least squares(rPLS): An efficient varible selection method using PLS, Journal of Chemometrics, 28 (2014), 439-447.
|
[15] |
M. L. Stein,
Spatial variation of total column ozone on a global scale, The Annals of Applied Statistics, 1 (2007), 191-210.
doi: 10.1214/07-AOAS106. |
[16] |
K. C. Toh, M. J. Todd and R. H. Tutuncu,
SDPT3 - a Matlab software package for semidefinite programming, Optimization Methods and Software, 11 (1999), 545-581.
doi: 10.1080/10556789908805762. |
[17] |
K. G. Woodgate,
Efficient stiffness matrix estimation for elastic structures, Computers and Structures, 69 (1998), 79-84.
|
Parameters | Spending time | Parameters | Spending time | ||||
(71, 65, 67) | T1 | 62.1 | 15.6 | (59, 8, 30) | T1 | 0.017 | 0.016 |
(53, 39, 48) | 2.13 | 1.95 | (103, 61, 85) | 1.82 | 1.09 | ||
(101, 33, 61) | 0.25 | 0.19 | (102, 78, 90) | 8.95 | 5.61 | ||
(102, 19, 95) | 0.040 | 0.039 | (93, 20, 92) | 0.041 | 0.038 | ||
(66, 48, 53) | 10.1 | 3.28 | (58, 18, 45) | 0.05 | 0.05 | ||
(62, 4, 38) | T2 | 0.009 | 0.008 | (49, 41, 42) | T2 | 115.6 | 8.67 |
(71, 11, 24) | 0.04 | 0.02 | (94, 44, 92) | 0.94 | 0.28 | ||
(92, 43, 64) | 1.99 | 0.45 | (98, 19, 93) | 0.05 | 0.03 | ||
(93, 7, 48) | 0.014 | 0.012 | (73, 4, 30) | 0.008 | 0.007 | ||
(86, 64, 72) | 32.9 | 3.99 | (78, 39, 62) | 1.54 | 0.34 | ||
(94, 16, 85, (6)) | T3 | 0.03 | 0.02 | (91, 43, 83, (21)) | T3 | 0.90 | 0.20 |
(60, 36, 53, (25)) | 1.18 | 0.28 | (54, 11, 24, (9)) | 0.04 | 0.02 | ||
(31, 8, 10, (7)) | 0.12 | 0.03 | (86, 9, 83, (1)) | 0.019 | 0.015 | ||
(78, 55, 69, (7)) | 20.7 | 0.77 | (97, 17, 33, (15)) | 0.08 | 0.04 | ||
(98, 43, 51, (3)) | 10.3 | 0.44 | (42, 10, 36, (9)) | 0.023 | 0.019 |
Parameters | Spending time | Parameters | Spending time | ||||
(71, 65, 67) | T1 | 62.1 | 15.6 | (59, 8, 30) | T1 | 0.017 | 0.016 |
(53, 39, 48) | 2.13 | 1.95 | (103, 61, 85) | 1.82 | 1.09 | ||
(101, 33, 61) | 0.25 | 0.19 | (102, 78, 90) | 8.95 | 5.61 | ||
(102, 19, 95) | 0.040 | 0.039 | (93, 20, 92) | 0.041 | 0.038 | ||
(66, 48, 53) | 10.1 | 3.28 | (58, 18, 45) | 0.05 | 0.05 | ||
(62, 4, 38) | T2 | 0.009 | 0.008 | (49, 41, 42) | T2 | 115.6 | 8.67 |
(71, 11, 24) | 0.04 | 0.02 | (94, 44, 92) | 0.94 | 0.28 | ||
(92, 43, 64) | 1.99 | 0.45 | (98, 19, 93) | 0.05 | 0.03 | ||
(93, 7, 48) | 0.014 | 0.012 | (73, 4, 30) | 0.008 | 0.007 | ||
(86, 64, 72) | 32.9 | 3.99 | (78, 39, 62) | 1.54 | 0.34 | ||
(94, 16, 85, (6)) | T3 | 0.03 | 0.02 | (91, 43, 83, (21)) | T3 | 0.90 | 0.20 |
(60, 36, 53, (25)) | 1.18 | 0.28 | (54, 11, 24, (9)) | 0.04 | 0.02 | ||
(31, 8, 10, (7)) | 0.12 | 0.03 | (86, 9, 83, (1)) | 0.019 | 0.015 | ||
(78, 55, 69, (7)) | 20.7 | 0.77 | (97, 17, 33, (15)) | 0.08 | 0.04 | ||
(98, 43, 51, (3)) | 10.3 | 0.44 | (42, 10, 36, (9)) | 0.023 | 0.019 |
[1] |
Xiao-Wen Chang, David Titley-Peloquin. An improved algorithm for generalized least squares estimation. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 451-461. doi: 10.3934/naco.2020044 |
[2] |
Zhuoyi Xu, Yong Xia, Deren Han. On box-constrained total least squares problem. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 439-449. doi: 10.3934/naco.2020043 |
[3] |
Anwa Zhou, Jinyan Fan. A semidefinite relaxation algorithm for checking completely positive separable matrices. Journal of Industrial and Management Optimization, 2019, 15 (2) : 893-908. doi: 10.3934/jimo.2018076 |
[4] |
Zhou Sheng, Gonglin Yuan, Zengru Cui, Xiabin Duan, Xiaoliang Wang. An adaptive trust region algorithm for large-residual nonsmooth least squares problems. Journal of Industrial and Management Optimization, 2018, 14 (2) : 707-718. doi: 10.3934/jimo.2017070 |
[5] |
Yazheng Dang, Marcus Ang, Jie Sun. An inertial triple-projection algorithm for solving the split feasibility problem. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022019 |
[6] |
Ouafa Belguidoum, Hassina Grar. An improved projection algorithm for variational inequality problem with multivalued mapping. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022002 |
[7] |
Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057 |
[8] |
Chenchen Wu, Dachuan Xu, Xin-Yuan Zhao. An improved approximation algorithm for the $2$-catalog segmentation problem using semidefinite programming relaxation. Journal of Industrial and Management Optimization, 2012, 8 (1) : 117-126. doi: 10.3934/jimo.2012.8.117 |
[9] |
Xueling Zhou, Meixia Li, Haitao Che. Relaxed successive projection algorithm with strong convergence for the multiple-sets split equality problem. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2557-2572. doi: 10.3934/jimo.2020082 |
[10] |
Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001 |
[11] |
Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15 |
[12] |
Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems and Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133 |
[13] |
Yanyan Hu, Fubao Xi, Min Zhu. Least squares estimation for distribution-dependent stochastic differential delay equations. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1505-1536. doi: 10.3934/cpaa.2022027 |
[14] |
Yanxing Cui, Chuanlong Wang, Ruiping Wen. On the convergence of generalized parallel multisplitting iterative methods for semidefinite linear systems. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 863-873. doi: 10.3934/naco.2012.2.863 |
[15] |
Ya-Zheng Dang, Zhong-Hui Xue, Yan Gao, Jun-Xiang Li. Fast self-adaptive regularization iterative algorithm for solving split feasibility problem. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1555-1569. doi: 10.3934/jimo.2019017 |
[16] |
Tianyu Yang, Yang Yang. A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem. Inverse Problems and Imaging, 2022, 16 (1) : 1-18. doi: 10.3934/ipi.2021038 |
[17] |
Ashif Mustafa, Manideepa Saha. A generalized projection iterative method for solving non-singular linear systems. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022009 |
[18] |
Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211 |
[19] |
Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015 |
[20] |
Simai He, Min Li, Shuzhong Zhang, Zhi-Quan Luo. A nonconvergent example for the iterative water-filling algorithm. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 147-150. doi: 10.3934/naco.2011.1.147 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]