• Previous Article
    Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation
  • NACO Home
  • This Issue
  • Next Article
    Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization
doi: 10.3934/naco.2021018

Analysis of Rayleigh Taylor instability in nanofluids with rotation

1. 

Research Scholar, Deparment of Mathematics, NIILM University, Kaithal, Haryana, India

2. 

Department of Mathematics, Post Graduate Government College, Sector-11, Chandigarh, India

3. 

Department of Mathematics, NIILM University, Kaithal, Haryana, India

* Corresponding author: jyotiahuja1985@gmail.com

Received  December 2020 Revised  April 2021 Early access  May 2021

This article focuses on the hidden insights about the Rayleigh-Taylor instability of two superimposed horizontal layers of nanofluids having different densities in the presence of rotation factor. Conservation equations are subjected to linear perturbations and further analyzed by using the Normal Mode technique. A dispersion relation incorporating the effects of surface tension, Atwood number, rotation factor and volume fraction of nanoparticles is obtained. Using Routh-Hurtwitz criterion the stable and unstable modes of Rayleigh-Taylor instability are discussed in the presence/absence of nanoparticles and presented through graphs. It is observed that in the absence/presence of nanoparticles, surface tension helps to stabilize the system and Atwood number has a destabilizing impact without the consideration of rotation factor. But if rotation parameter is considered (in the absence/presence of nanoparticles) then surface tension destabilizes the system while Atwood number has a stabilization effect (for a particular range of wave number). The volume fraction of nanoparticles destabilizes the system in the absence of rotation but in the presence of rotation the stability of the system is significantly stimulated by the nanoparticles.

Citation: Pooja Girotra, Jyoti Ahuja, Dinesh Verma. Analysis of Rayleigh Taylor instability in nanofluids with rotation. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2021018
References:
[1]

J. Ahuja and U. Gupta, Magneto convection in rotating nanofluid layer: Local thermal non-equilibrium model, American Scientific Publisher, 8 (2019), 1-9.   Google Scholar

[2]

J. Ahuja and P. Girotra, Analytical and numerical investigation of Rayleigh-Taylor instability in nanofluids, Pramana - J. Phys., 95 (2021), 25. Google Scholar

[3]

K. A. Baldwin, M. M. Scase and R. J. A. Hill, The inhibition of Rayleigh Taylor instability by rotation, Sci. Rep., 5 (2015), 11706. Google Scholar

[4]

B. S. Bhaduria, A. Kumar, J. Kumar, N. C. Sacheti and P. Chandran, Natural convection in a rotating anisotropic porous layer with internal heat generation, Transport in Porous Media, 90 (2011), 687–705. doi: 10.1007/s11242-011-9811-0.  Google Scholar

[5]

P. K. Bhatia, Rayleigh-Taylor instability of a viscous compressible plasma of variable density, Astrophysics and Space Science, 26 (1974), 319-325.   Google Scholar

[6]

J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf., 128 (2006), 240-250.   Google Scholar

[7]

B. B. Chakraborthy, A note on Rayleigh Taylor insability in presence of rotation, Z. Angew. Math. Mech., 59 (1959), 651-652.   Google Scholar

[8]

B. B. Chakraborthy, Hydromagnetic Rayligh Taylor instabilityof rotating stratified fluid, Phys. Fluids, 25 (1982), 743-747.  doi: 10.1063/1.863828.  Google Scholar

[9]

S. Chandrasekhar, The character of the equilibrium of an incompressible heavy viscous fluid of variable density, Proc. Cambridge Philos. Soc., 51 (1955), 162–178. doi: 10.1017/s0305004100030048.  Google Scholar

[10]

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, 2$^{nd}$ edition, Dover Publication, New York, 1981.  Google Scholar

[11]

S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In Development and Applications of Non-Newtonian flows, FED- 231/MD(eds. D. A. Siginer and H. P. Wang), ASME, 66 (1955), 99-105. Google Scholar

[12]

S. K. DasN. PutraP. Thiesen and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME J. Heat Transfer, 25 (2003), 567-574.   Google Scholar

[13]

L. A. Dávalos-Orzoco, Rayleigh-Taylor instability of a continuously stratified fluid under a general rotation field, Phys. Fluids A, 1 (1989), 1192-1199.   Google Scholar

[14]

N. F. El-AnsaryG. A. HoshoudyA. S. Abd-Elrady and A. H. A. Ayyad, Effects of surface tension and rotation on Rayleigh Taylor instability, Phys. Chem. Chem. Phys., 4 (2002), 1464-1470.   Google Scholar

[15]

R. Hide, The character of the equilibrium of a heavy, viscous, incompressible, rotating fluid of variable density ii. two special cases, Q. J. Mech. Appl. Math., 9 (1956), 35-50.  doi: 10.1093/qjmam/9.1.35.  Google Scholar

[16]

P. Kumar, Rayleigh Taylor instability of rotating Oloroydian viscoelastic fluids in porous medium in presence of a variable magnetic field, Jnanabha, 24 (1977), 127-134.   Google Scholar

[17]

H. MasudaA. EbataK. Teramae and N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles, Netsu Bussei, 7 (1993), 227-233.   Google Scholar

[18]

D. A. Nield and A. V. Kuznetsov, Thermal instability in a porous medium layer saturated by nanofluid, Int. J. Heat Mass Transfer, 52 (2008), 5796-5801.  doi: 10.1007/s11242-009-9413-2.  Google Scholar

[19]

L. Rayleigh, Investigation of the character of equilibrium of an incompressible heavy fluid of variable density, Proc. Roy. Math. Soc., 14 (1883), 170-177.  doi: 10.1112/plms/s1-14.1.170.  Google Scholar

[20]

P. K. Sahrma, A. Tiwari and S. Argal, Effect of magnetic field on the Rayleigh Taylor instability of rotating and stratified plasma, IOP Conf. Series: Journal of Physics: Conf. Series, 836 (2017), 012009. Google Scholar

[21]

M. M. Scase, K. A. Baldwin and R. J. A. Hill, The rotating Rayleigh Taylor instability, Physical Review Fluids, 2 (2017), 024801 (1-21). Google Scholar

[22]

R. C. Sharma, MHD instability of rotating superposed fluids through porous medium, Acta Physica Academiae Scientiarium Hungaricace, 42 (1977), 21-28.  doi: 10.1007/BF03157196.  Google Scholar

[23]

R. C. SharmaP. Kumar and S. Sharma, Rayleigh Taylor instability of Rivlin-Ericksen elastico-viscous fluid through porous medium, Indian Journal of Physics, 4 (2001), 337-340.   Google Scholar

[24]

R. C. Sharma and V. K. Bhardwaj, Rayleigh Taylor instability of Newtonian and Oldroydian viscoelastic fluids in porous medium, Z. Naturforsch, 49a (1994), 927-930.   Google Scholar

[25]

J. J. Tao, X. T. He, W. H. Ye and F. H. Busse, Nonlinear Rayleigh Taylor instability of inviscid fluids, Physical Review E, 87 (2013), 013001 (1-4). Google Scholar

[26]

G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. R. Soc. Ser. A., 201 (1950), 192-196.  doi: 10.1098/rspa.1950.0052.  Google Scholar

[27]

D. Y. Tzou, Thermal instability of nanofluids in natural convection, Int. J. of Heat Mass Transf., 51 (2008), 2967-2979.   Google Scholar

[28]

A. Volk and C. J. Khaler, Density model for aqueous glycerol solutions, Experiments in Fluids, 59 (2018), 75 (1-4). Google Scholar

show all references

References:
[1]

J. Ahuja and U. Gupta, Magneto convection in rotating nanofluid layer: Local thermal non-equilibrium model, American Scientific Publisher, 8 (2019), 1-9.   Google Scholar

[2]

J. Ahuja and P. Girotra, Analytical and numerical investigation of Rayleigh-Taylor instability in nanofluids, Pramana - J. Phys., 95 (2021), 25. Google Scholar

[3]

K. A. Baldwin, M. M. Scase and R. J. A. Hill, The inhibition of Rayleigh Taylor instability by rotation, Sci. Rep., 5 (2015), 11706. Google Scholar

[4]

B. S. Bhaduria, A. Kumar, J. Kumar, N. C. Sacheti and P. Chandran, Natural convection in a rotating anisotropic porous layer with internal heat generation, Transport in Porous Media, 90 (2011), 687–705. doi: 10.1007/s11242-011-9811-0.  Google Scholar

[5]

P. K. Bhatia, Rayleigh-Taylor instability of a viscous compressible plasma of variable density, Astrophysics and Space Science, 26 (1974), 319-325.   Google Scholar

[6]

J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf., 128 (2006), 240-250.   Google Scholar

[7]

B. B. Chakraborthy, A note on Rayleigh Taylor insability in presence of rotation, Z. Angew. Math. Mech., 59 (1959), 651-652.   Google Scholar

[8]

B. B. Chakraborthy, Hydromagnetic Rayligh Taylor instabilityof rotating stratified fluid, Phys. Fluids, 25 (1982), 743-747.  doi: 10.1063/1.863828.  Google Scholar

[9]

S. Chandrasekhar, The character of the equilibrium of an incompressible heavy viscous fluid of variable density, Proc. Cambridge Philos. Soc., 51 (1955), 162–178. doi: 10.1017/s0305004100030048.  Google Scholar

[10]

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, 2$^{nd}$ edition, Dover Publication, New York, 1981.  Google Scholar

[11]

S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In Development and Applications of Non-Newtonian flows, FED- 231/MD(eds. D. A. Siginer and H. P. Wang), ASME, 66 (1955), 99-105. Google Scholar

[12]

S. K. DasN. PutraP. Thiesen and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME J. Heat Transfer, 25 (2003), 567-574.   Google Scholar

[13]

L. A. Dávalos-Orzoco, Rayleigh-Taylor instability of a continuously stratified fluid under a general rotation field, Phys. Fluids A, 1 (1989), 1192-1199.   Google Scholar

[14]

N. F. El-AnsaryG. A. HoshoudyA. S. Abd-Elrady and A. H. A. Ayyad, Effects of surface tension and rotation on Rayleigh Taylor instability, Phys. Chem. Chem. Phys., 4 (2002), 1464-1470.   Google Scholar

[15]

R. Hide, The character of the equilibrium of a heavy, viscous, incompressible, rotating fluid of variable density ii. two special cases, Q. J. Mech. Appl. Math., 9 (1956), 35-50.  doi: 10.1093/qjmam/9.1.35.  Google Scholar

[16]

P. Kumar, Rayleigh Taylor instability of rotating Oloroydian viscoelastic fluids in porous medium in presence of a variable magnetic field, Jnanabha, 24 (1977), 127-134.   Google Scholar

[17]

H. MasudaA. EbataK. Teramae and N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles, Netsu Bussei, 7 (1993), 227-233.   Google Scholar

[18]

D. A. Nield and A. V. Kuznetsov, Thermal instability in a porous medium layer saturated by nanofluid, Int. J. Heat Mass Transfer, 52 (2008), 5796-5801.  doi: 10.1007/s11242-009-9413-2.  Google Scholar

[19]

L. Rayleigh, Investigation of the character of equilibrium of an incompressible heavy fluid of variable density, Proc. Roy. Math. Soc., 14 (1883), 170-177.  doi: 10.1112/plms/s1-14.1.170.  Google Scholar

[20]

P. K. Sahrma, A. Tiwari and S. Argal, Effect of magnetic field on the Rayleigh Taylor instability of rotating and stratified plasma, IOP Conf. Series: Journal of Physics: Conf. Series, 836 (2017), 012009. Google Scholar

[21]

M. M. Scase, K. A. Baldwin and R. J. A. Hill, The rotating Rayleigh Taylor instability, Physical Review Fluids, 2 (2017), 024801 (1-21). Google Scholar

[22]

R. C. Sharma, MHD instability of rotating superposed fluids through porous medium, Acta Physica Academiae Scientiarium Hungaricace, 42 (1977), 21-28.  doi: 10.1007/BF03157196.  Google Scholar

[23]

R. C. SharmaP. Kumar and S. Sharma, Rayleigh Taylor instability of Rivlin-Ericksen elastico-viscous fluid through porous medium, Indian Journal of Physics, 4 (2001), 337-340.   Google Scholar

[24]

R. C. Sharma and V. K. Bhardwaj, Rayleigh Taylor instability of Newtonian and Oldroydian viscoelastic fluids in porous medium, Z. Naturforsch, 49a (1994), 927-930.   Google Scholar

[25]

J. J. Tao, X. T. He, W. H. Ye and F. H. Busse, Nonlinear Rayleigh Taylor instability of inviscid fluids, Physical Review E, 87 (2013), 013001 (1-4). Google Scholar

[26]

G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. R. Soc. Ser. A., 201 (1950), 192-196.  doi: 10.1098/rspa.1950.0052.  Google Scholar

[27]

D. Y. Tzou, Thermal instability of nanofluids in natural convection, Int. J. of Heat Mass Transf., 51 (2008), 2967-2979.   Google Scholar

[28]

A. Volk and C. J. Khaler, Density model for aqueous glycerol solutions, Experiments in Fluids, 59 (2018), 75 (1-4). Google Scholar

Figure 1.  Effect of surface tension on growth rate parameter of Rayleigh Taylor instability in the absence of nanoparticles with rotation and without rotation for varying T = 0.1, 0.2
Figure 2.  Effect of Atwood number on growth rate parameter of Rayleigh Taylor instability in the absence of nanoparticles with rotation and without rotation for varying A = 0.11, 0.119
Figure 3.  Effect of rotation parameter on growth rate parameter of Rayleigh Taylor instability in the absence of nanoparticles with rotation and without rotation for varying $ \Omega $ = 0.1, 0.2, 0.3
Figure 4.  Effect of surface tension on growth rate parameter of Rayleigh Taylor instability in the presence of same kind of nanoparticles with rotation and without rotation for varying T = 0.0001, 0.0002
Figure 5.  Effect of Atwood number on growth rate parameter of Rayleigh Taylor instability in the presence of same kind of nanoparticles with rotation and without rotation for varying A = 0.11, 0.119
Figure 6.  Effect of volume fraction of nanoparicles on growth rate parameter of Rayleigh Taylor instability in the presence of same kind of nanoparticles with rotation and without rotation for varying $ \phi $ = 0.001, 0.005
Figure 7.  Effect of rotation number on growth rate parameter of Rayleigh Taylor instability in the presence of same kind of nanoparticles $ \Omega $ = 0.1, 0.2, 0.3
Figure 8.  Effect of surface tension on growth rate parameter of Rayleigh Taylor instability in the presence of different kind of nanoparticles with rotation and without rotation for varying T = 0.0001, 0.0002
Figure 9.  Effect of Atwood number on growth rate parameter of Rayleigh Taylor instability in the presence of same kind of nanoparticles with rotation and without rotation for varying A = 0.11, 0.119
Figure 10.  Effect of volume fraction of nanoparicles on growth rate parameter of Rayleigh Taylor instability in the presence of different kind of nanoparticles with rotation and without rotation for varying $ \phi $ = 0.001, 0.005
Figure 11.  Effect of rotation number on growth rate parameter of Rayleigh Taylor instability in the presence of diffrent kind of nanoparticles $ \Omega $ = 0.1, 0.2, 0.3
[1]

Fei Jiang, Song Jiang, Weiwei Wang. Nonlinear Rayleigh-Taylor instability for nonhomogeneous incompressible viscous magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1853-1898. doi: 10.3934/dcdss.2016076

[2]

Jing Wang, Feng Xie. On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2767-2784. doi: 10.3934/dcdsb.2016072

[3]

Michel Laurent, Arnaldo Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 2018, 12: 175-191. doi: 10.3934/jmd.2018007

[4]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[5]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[6]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287

[7]

Hyung Ju Hwang, Youngmin Oh, Marco Antonio Fontelos. The vanishing surface tension limit for the Hele-Shaw problem. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3479-3514. doi: 10.3934/dcdsb.2016108

[8]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[9]

Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217

[10]

Colette Calmelet, Diane Sepich. Surface tension and modeling of cellular intercalation during zebrafish gastrulation. Mathematical Biosciences & Engineering, 2010, 7 (2) : 259-275. doi: 10.3934/mbe.2010.7.259

[11]

Nataliya Vasylyeva, Vitalii Overko. The Hele-Shaw problem with surface tension in the case of subdiffusion. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1941-1974. doi: 10.3934/cpaa.2016023

[12]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241

[13]

Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Analysis of a model coupling volume and surface processes in thermoviscoelasticity. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2349-2403. doi: 10.3934/dcds.2015.35.2349

[14]

Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597

[15]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[16]

Shengfu Deng. Generalized pitchfork bifurcation on a two-dimensional gaseous star with self-gravity and surface tension. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3419-3435. doi: 10.3934/dcds.2014.34.3419

[17]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[18]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

[19]

Jungho Park. Dynamic bifurcation theory of Rayleigh-Bénard convection with infinite Prandtl number. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 591-604. doi: 10.3934/dcdsb.2006.6.591

[20]

Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255

 Impact Factor: 

Metrics

  • PDF downloads (37)
  • HTML views (137)
  • Cited by (0)

Other articles
by authors

[Back to Top]