doi: 10.3934/naco.2021026
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative

1. 

Laboratory for Pure and Applied Mathematics, University of M'sila, Bp 166 M'sila, 28000, Algeria

2. 

Department of Mathematics, Laboratory for Pure and Applied Mathematics, University of M'sila, Bp 166 M'sila, 28000, Algeria

*Corresponding author: Yacine Arioua

Received  May 2021 Revised  June 2021 Early access July 2021

Fund Project: This work was financially supported by the General Direction of Scientific Research and Technological Development (DGRSDT)-Algeria, PRFU(Grant No. C00L03UN280120180010)

In this paper, a numerical approximation solution of a space-time fractional diffusion equation (FDE), involving Caputo-Katugampola fractional derivative is considered. Stability and convergence of the proposed scheme are discussed using mathematical induction. Finally, the proposed method is validated through numerical simulation results of different examples.

Citation: Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, doi: 10.3934/naco.2021026
References:
[1]

R. B AlbadarnehaI. M Batihab and M Zurigatb, Numerical solutions for linear fractional differential equations of order $1<\alpha <2$ using finite difference method (FFDM), Int. J. Math., 16 (2016), 103-111. 

[2]

R. Almeida, T. Odzijewicz and Agnieszka B. Malinowska, Fractional differential Equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dyn, 11 (2016), 11.

[3]

J. F Cheng and Y. M Chu, Solution to the linear fractional differential equation using Adomian decomposition method, Math. Probl. Eng., 2011 (2011), 14. doi: 10.1155/2011/587068.

[4]

K. Diethelm, The Analysis of Fractional Differential Equations, Springer Science Berlin, New York, 2010. doi: 10.1007/978-3-642-14574-2.

[5]

N. FarazY. Khan and D. S. Sankar, Decomposition-transform method for fractional differential equations, Int. J. Nonl. Sci. Num. Sim., 11 (2010), 305-310. 

[6]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/3779.

[7]

M. Janaki, K. Kanagarajan and D. Vivek, Analytic study on fractional implicit differential equations with impulses via Katugampola fractional derivative, Int. J. Math. And Appl., 55 (2018), 7.

[8]

U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.  doi: 10.1016/j.amc.2011.03.062.

[9]

U. N. Katugampola, A new approach to generalized fractional derivatives, J. Math. Anal. Appl., 6 (2014), 1-15. 

[10]

A. A. Kilbas, H. H. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006. doi: 10.1016/s0304-0208(06)x8001-5.

[11]

R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, 2006.

[12] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models Imperial, College Press, Singapore, 2010.  doi: 10.1142/9781848163300.
[13]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[14]

C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue and V. Feliu, Fractional-Order Systems and Controls, Advances in Industrial Control, Springer, 2010. doi: 10.1007/978-1-84996-335-0.

[15]

I. Petras, Fractional-Order Nonlinear Systems, Springer, New York, 2011. doi: 10.1007/978-3-642-18101-6_3.

[16] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999. 
[17]

J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007. doi: 10.1007/978-1-4020-6042-7.

[18]

S. G. Samko, A. A. Kilbas and O.I. Marichev, Fractional Integral and Derivatives (Theory and Applications), Gordon and Breach, Switzerland, 1993.

[19]

S. ShenF. Liu and V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation, Numer. Algorithms, 56 (2011), 383-403.  doi: 10.1007/s11075-010-9393-x.

[20]

H. Sheng, Y. Q. Chen and T. S. Qiu, Fractional Processes and Fractional-order Signal Processing, Springer, London, 2012. doi: 10.1007/978-1-4471-2233-3.

[21]

X. C. ShiL. L. Huang and Y. Zeng, Fast Adomian decomposition method for the Cauchy problem of the time–fractional reaction diffusion equation, Adv. Mech. Eng, 8 (2016), 1-5. 

[22]

B.J. West, M. Bologna and P. Grigolini, Physics of Fractal Operators, 1$^{st}$ edition, Springer, New York, 2003. doi: 10.1007/978-0-387-21746-8.

[23]

S. ZengD. BaleanuY. Bai and G. Wu, Fractional differential equations of Caputo–Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549-554.  doi: 10.1016/j.amc.2017.07.003.

show all references

References:
[1]

R. B AlbadarnehaI. M Batihab and M Zurigatb, Numerical solutions for linear fractional differential equations of order $1<\alpha <2$ using finite difference method (FFDM), Int. J. Math., 16 (2016), 103-111. 

[2]

R. Almeida, T. Odzijewicz and Agnieszka B. Malinowska, Fractional differential Equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dyn, 11 (2016), 11.

[3]

J. F Cheng and Y. M Chu, Solution to the linear fractional differential equation using Adomian decomposition method, Math. Probl. Eng., 2011 (2011), 14. doi: 10.1155/2011/587068.

[4]

K. Diethelm, The Analysis of Fractional Differential Equations, Springer Science Berlin, New York, 2010. doi: 10.1007/978-3-642-14574-2.

[5]

N. FarazY. Khan and D. S. Sankar, Decomposition-transform method for fractional differential equations, Int. J. Nonl. Sci. Num. Sim., 11 (2010), 305-310. 

[6]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/3779.

[7]

M. Janaki, K. Kanagarajan and D. Vivek, Analytic study on fractional implicit differential equations with impulses via Katugampola fractional derivative, Int. J. Math. And Appl., 55 (2018), 7.

[8]

U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.  doi: 10.1016/j.amc.2011.03.062.

[9]

U. N. Katugampola, A new approach to generalized fractional derivatives, J. Math. Anal. Appl., 6 (2014), 1-15. 

[10]

A. A. Kilbas, H. H. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006. doi: 10.1016/s0304-0208(06)x8001-5.

[11]

R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, 2006.

[12] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models Imperial, College Press, Singapore, 2010.  doi: 10.1142/9781848163300.
[13]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[14]

C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue and V. Feliu, Fractional-Order Systems and Controls, Advances in Industrial Control, Springer, 2010. doi: 10.1007/978-1-84996-335-0.

[15]

I. Petras, Fractional-Order Nonlinear Systems, Springer, New York, 2011. doi: 10.1007/978-3-642-18101-6_3.

[16] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999. 
[17]

J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007. doi: 10.1007/978-1-4020-6042-7.

[18]

S. G. Samko, A. A. Kilbas and O.I. Marichev, Fractional Integral and Derivatives (Theory and Applications), Gordon and Breach, Switzerland, 1993.

[19]

S. ShenF. Liu and V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation, Numer. Algorithms, 56 (2011), 383-403.  doi: 10.1007/s11075-010-9393-x.

[20]

H. Sheng, Y. Q. Chen and T. S. Qiu, Fractional Processes and Fractional-order Signal Processing, Springer, London, 2012. doi: 10.1007/978-1-4471-2233-3.

[21]

X. C. ShiL. L. Huang and Y. Zeng, Fast Adomian decomposition method for the Cauchy problem of the time–fractional reaction diffusion equation, Adv. Mech. Eng, 8 (2016), 1-5. 

[22]

B.J. West, M. Bologna and P. Grigolini, Physics of Fractal Operators, 1$^{st}$ edition, Springer, New York, 2003. doi: 10.1007/978-0-387-21746-8.

[23]

S. ZengD. BaleanuY. Bai and G. Wu, Fractional differential equations of Caputo–Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549-554.  doi: 10.1016/j.amc.2017.07.003.

Figure 1.  Graphical comparison of the numerical and the exact solution with $ h = 0.001 $, $ k = 0.1 $, $ \rho = 2 $, $ \alpha = 0.7, $ $ n = 20 $ and $ m = 25 $
Figure 2.  Graphical comparison of the numerical and the exact solution with $ k = 0.1 $, $ \rho = 2 $, $ \alpha = 0.6, $ $ \beta = 1.8, $ $ n = 30 $ and $ m = 25 $
Figure 3.  Graphical comparison of the numerical and the exact solution with $ k = 0.1 $, $ \rho = 2, $ $ \alpha = 0.9 $, $ (a)\ \beta = 1 $, $ (b)\ \beta = 2 $ and $ m = 25 $
Figure 4.  Graphical comparison of the numerical and the exact solution with $ h = 0.005 $, $ k = 0.1 $, $ \rho = 3 $, $ \alpha = 0.7, $ $ n = 20 $ and $ m = 15 $
Figure 5.  Graphical comparison of the numerical and the exact solution with $ k = 0.1 $, $ \rho = 3 $, $ \alpha = 0.8, $ $ \beta = 1.8, $ $ n = 40 $ and $ m = 15 $
Figure 6.  Graphical comparison of the numerical and the exact solution with $ k = 0.1 $, $ \rho = 3 $, $ \alpha = 0.9, $ $ (a)\ \beta = 1 $, $ (b)\ \beta = 2 $ and $ m = 15 $
[1]

Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317

[2]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402

[3]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[4]

Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014

[5]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[7]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[8]

Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302

[9]

Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2020173

[10]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013

[11]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[12]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[13]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

[14]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[15]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[16]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[17]

Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022020

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435

[19]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021021

[20]

Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations and Control Theory, 2022, 11 (2) : 439-455. doi: 10.3934/eect.2021007

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]